检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡永强
机构地区:[1]苏州市阳山实验初级中学校,江苏苏州215151
出 处:《中学生数学》2023年第24期21-23,共3页
基 金:江苏省中小学教学研究第十四期课题“初中数学学科德育内容开发与实施路径研究”(2021JY14-L47);江苏第二师范学院学科资源建设“初中数学课程思政案例研究”项目(JSSNU03202221)。
摘 要:提起勾股定理,大家都比较熟悉,这条定理内容是:一个直角三角形两条直角边的平方和等于斜边的平方.古今中外,勾股定理的证明一直是人们探索的一个热点话题,目前已经有400多种证明方法.我国古代有许多数学家给出过勾股定理的不同证法.清朝后期,有一位名叫华蘅芳的14岁少年研究出勾股定理的22种证明方法[1].想必大家会对他的这一成果感到惊叹,下面我们通过一出话剧了解华蘅芳的生平往事.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170