基于循环神经网络的实时偏好感知兴趣点推荐  被引量:1

Real-time preference-aware point-of-interest recommendationbased on recurrent neural network

在线阅读下载全文

作  者:李勇[1] 韩志媛[2] 安敬民 LI Yong;HAN Zhi-yuan;AN Jing-min(School of Computer Engineering,Weifang University,Weifang 261061,China;School of Foreign Languages,Weifang Medical University,Weifang 261053,China;School of Information Science and Technology,Dalian Maritime University,Dalian 116026,China)

机构地区:[1]潍坊学院计算机工程学院,山东潍坊261061 [2]潍坊医学院外国语学院,山东潍坊261053 [3]大连海事大学信息科学技术学院,辽宁大连116026

出  处:《计算机工程与设计》2023年第12期3772-3777,共6页Computer Engineering and Design

基  金:国家自然科学基金项目(61976032)。

摘  要:鉴于现有兴趣点推荐方法未能充分考虑用户实时偏好的影响,提出一种利用循环神经网络学习用户实时偏好嵌入的兴趣点推荐方法。为建模用户实时偏好,通过融合地理信息和时间信息学习用户实时状态嵌入。考虑历史签到信息对用户偏好决策的影响,基于矩阵分解技术开发一种组合兴趣点类别信息和用户社会信息的用户偏好嵌入表示。联合用户实时需求向量和历史偏好向量,使用一种基于注意力机制的循环神经网络框架实现用户实时兴趣点偏好的预测。经大量实验验证了所提用户实时偏好预测模型的可行性,较其它现有流行的方法,查准率和查全率分别提高了8.7%和8.3%。Since the existing point-of-interest(POI)recommendation methods do not fully consider the impact of the user’s real-time preference,a real-time preference-aware point-of-interest recommendation using the recurrent neural network(RTPAR)was proposed.Geographical information and temporal information were fused to represent the user’s real-time demand at diffe-rent time periods.Considering that the user historical check-in information played an important role in the user preference prediction,a matrix factorization-based preference learning framework fusing POI category information and user relationship information was proposed to learn the user historical preference embedding.Combined with the user’s real-time preference and historical preference vectors,a recurrent neural network framework based on an attention mechanism was used to predict the user’s real-time POI preference.The extensive experiments show that the proposed user’s real-time preference prediction model is feasible,and the precision and recall are improved by 8.7%and 8.3%respectively,compared with other state-of-the-art methods.

关 键 词:兴趣点推荐 用户实时偏好 历史偏好 循环神经网络 矩阵分解 上下文信息 注意力机制 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象