检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦耀凯 陶涛[1] 陈星艳[1] 周昭龙 王雷东 QIN Yao-kai;TAO Tao;CHEN Xing-yan;ZHOU Zhao-long;WANG Lei-dong(Central South University of Forestry and Technology,Changsha 410004,Hunan,P.R.China;Suofeiya Home Collection Co.,Ltd.,Guangzhou 511358,Guangdong,P.R.China)
机构地区:[1]中南林业科技大学,湖南长沙410004 [2]索菲亚家居股份有限公司,广东广州511358
出 处:《林产工业》2023年第12期50-56,68,共8页China Forest Products Industry
基 金:湖南省教育厅科学研究重点项目(20A509)。
摘 要:为落实家具行业的“双碳”战略,实现家具产业的结构优化升级,本文提出了一种基于WOA-BP神经网络的板式定制家具车间电力预测模型,该模型引入鲸鱼优化算法(Whale Optimization Algorithm,WOA)对传统BP神经网络进行改进,建立了WOA-BP神经网络电力预测模型。在此基础上,使用采集的试验数据对模型进行了验证。结果表明:优化后的预测模型预测准确率可达到99%以上。因此,本文提出的基于WOA-BP神经网络预测模型在板式定制家具生产车间的电力节能和管理优化问题上具有较大的参考价值和实际意义。In order to implement the"double carbon"strategy in the furniture industry and to achieve the structural optimization and upgrading of the furniture industry,a WOA-BP neural network-based power prediction model for panelized custom furniture workshops was proposed in this paper,which introduced the Whale Optimization Algorithm(WOA).The traditional BP neural network was improved and a WOA-BP neural network power prediction model was established.On this basis,the model was validated using the collected experimental data.The results showed that the prediction accuracy of the optimised prediction model can reach over 99%.Therefore,the WOA-BP neural network prediction model proposed in this paper was of great reference value and practical significance in the problem of power saving and management optimization in the production workshop of customized panel furniture.
关 键 词:电力预测 板式定制家具 WOA-BP神经网络 能耗管理 鲸鱼优化算法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.203.120