检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qirui Ren Xiaofan Sun Xiangqu Fu Shuaidi Zhang Yiyang Yuan Hao Wu Xiaoran Li Xinghua Wang Feng Zhang
机构地区:[1]Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics of the Chinese Academy of Sciences,Beijing 100029,China [2]School of Integrated Circuits,University of Chinese Academy of Sciences,Beijing 101408,China [3]School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China
出 处:《Journal of Semiconductors》2023年第12期8-30,共23页半导体学报(英文版)
基 金:supported by the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA0330000 and Grant No.XDB44000000。
摘 要:Epilepsy is a common neurological disorder that occurs at all ages.Epilepsy not only brings physical pain to patients,but also brings a huge burden to the lives of patients and their families.At present,epilepsy detection is still achieved through the observation of electroencephalography(EEG)by medical staff.However,this process takes a long time and consumes energy,which will create a huge workload to medical staff.Therefore,it is particularly important to realize the automatic detection of epilepsy.This paper introduces,in detail,the overall framework of EEG-based automatic epilepsy identification and the typical methods involved in each step.Aiming at the core modules,that is,signal acquisition analog front end(AFE),feature extraction and classifier selection,method summary and theoretical explanation are carried out.Finally,the future research directions in the field of automatic detection of epilepsy are prospected.
关 键 词:EPILEPSY ELECTROENCEPHALOGRAPHY automatic detection analog front end feature extraction CLASSIFIER
分 类 号:R742.1[医药卫生—神经病学与精神病学] TN911.7[医药卫生—临床医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.209