基于改进滑动窗口的渔船轨迹在线压缩算法  

Online compression algorithm of fishing ship trajectories based on improved sliding window

在线阅读下载全文

作  者:顾杰 宋鑫 施笑畏[1,2] 苌道方[1,2] GU Jie;SONG Xin;SHI Xiaowei;CHANG Daofang(Logistics Engineering College,Shanghai Maritime University,Shanghai 201306,China;Qingdao Institute,Shanghai Maritime University,Qingdao 266237,Shandong,China;Institute of Logistics Science&Engineering,Shanghai Maritime University,Shanghai 201306,China)

机构地区:[1]上海海事大学物流工程学院,上海201306 [2]上海海事大学青岛研究院,山东青岛266237 [3]上海海事大学物流科学与工程研究院,上海201306

出  处:《上海海事大学学报》2023年第4期17-24,共8页Journal of Shanghai Maritime University

基  金:工业和信息化部高技术船舶项目(MC-201917-C09)。

摘  要:为解决传统在线压缩算法在渔船轨迹点密集处易丢失轨迹,难以保留方向变化较大的特征点的问题,提出一种基于改进滑动窗口的渔船轨迹在线压缩算法。该算法将船舶领域的思想与经典滑动窗口算法相结合,在滑动窗口中加入一个可变的椭圆形船舶领域作为判断压缩轨迹点的依据。实验结果表明,该算法能够在不影响算法运行时间的同时更好地保留渔船轨迹的局部特征,并且在不同阈值下的压缩率比经典滑动窗口算法的平均提高了约5%,压缩效果更优。In order to solve the problem that the traditional online compression algorithm is easy to lose trajectories at the dense fishing ship trajectory points and it is difficult to retain the feature points with large direction changes,an online compression algorithm of fishing ship trajectories based on improved sliding window is proposed.The algorithm combines the idea of ship domain with the classical sliding window algorithm,and uses a variable elliptical ship domain in the sliding window as the basis for judging and compressing the trajectory points.The experimental results show that,the algorithm can better retain the local features of fishing ship trajectories without affecting the algorithm running time,and also improves the compression rate by about 5%on average than the classical sliding window algorithm under different thresholds,showing a better compression effect.

关 键 词:渔船轨迹 船舶自动识别系统(AIS)数据 改进滑动窗口算法 在线压缩 船舶领域 

分 类 号:U675.7[交通运输工程—船舶及航道工程] U674.4[交通运输工程—船舶与海洋工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象