检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:仝光[1] 尹浩 朱金栋 Tong Guang;Yin Hao;Zhu Jindong(Shanghai Dianji University,Shanghai 201306,China)
机构地区:[1]上海电机学院,上海201306
出 处:《计算机应用与软件》2023年第12期101-107,共7页Computer Applications and Software
基 金:上海市绿化和市容管理局科研攻关项目(G159918)。
摘 要:智能扫路车在规划好的全局路径下工作时,对路径跟踪的偏差较大。针对这个问题,提出模型预测控制(MPC)和二阶振荡粒子群优化算法(PSO)相结合的智能扫路车行驶轨迹跟踪控制算法。对智能扫路车运动学和动力学非线性模型进行线性处理得到线性时变系统;设计模型预测控制算法的目标函数和相关约束条件并利用二阶振荡粒子群算法寻找最优的控制时域和预测时域,构建自适应轨迹跟踪控制器;将自适应轨迹跟踪控制算法与其他的轨迹跟踪算法进行实验对比,自适应轨迹跟踪控制算法在跟踪精度和响应时间上更具优势。When the intelligent sweeper works under the planned global path,the deviation of path tracking is large.In order to solve this problem,an intelligent sweeper trajectory tracking control algorithm based on model predictive control(MPC)and second-order oscillatory particle swarm optimization(PSO)is proposed.The nonlinear kinematics and dynamics models of the intelligent sweeper were linearly processed to obtain the linear time-varying system.The objective function and related constraints of the model predictive control algorithm were designed,and the optimal control time domain and prediction time domain were found by using the second-order oscillatory particle swarm optimization,and the adaptive trajectory tracking controller was constructed.The adaptive trajectory tracking control algorithm was compared with other algorithms.The results show that the adaptive trajectory tracking control algorithm has more advantages in tracking accuracy and response time.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.158.23