检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张娟[1] 刘依萍 曹士盛 李欣[2] 董晓曦[3] 李宏霄 ZHANG Juan;LIU Yiping;CAO Shisheng;LI Xin;DONG Xiaoxi;LI Hongxiao(Department of Prosthodontics,Hospital of Stomatology,Tianjin Medical University,Tianjin 300070,China;Department of Periodontics,Hospital of Stomatology,Tianjin Medical University,Tianjin 300070,China;Institute of Biomedical Engineering,Chinese Academy of Medical Science,Tianjin 300192,China)
机构地区:[1]天津医科大学口腔医院修复科,天津300070 [2]天津医科大学口腔医院牙周科,天津300070 [3]中国医学科学院生物医学工程研究所,天津300192
出 处:《中国医科大学学报》2023年第12期1113-1118,共6页Journal of China Medical University
基 金:天津市教委社会科学重大项目(2019JWZD53)。
摘 要:目的应用拉曼光谱技术结合机器学习算法比较并区分伴或不伴2型糖尿病的慢性牙周炎患者以及健康成人的龈下菌斑。方法应用便携式拉曼光谱仪获取20例伴2型糖尿病的慢性牙周炎患者(A组)、23例单纯慢性牙周炎患者(B组)以及23例健康成人(C组)龈下菌斑的拉曼光谱图像,采用8种常见的机器学习算法构建模型,对3种类型龈下菌斑的拉曼光谱进行比较和区分。结果区分3种类型龈下菌斑拉曼光谱的最优模型是线性判别分析,区分A组和B组、A组和C组、B组和C组的最优模型分别是线性判别分析、极限树、线性判别分析。结论拉曼光谱技术结合机器学习算法构建分类模型可区分伴或不伴2型糖尿病的慢性牙周炎患者以及健康人的龈下菌斑,未来可作为筛查或诊断工具与临床实践相结合。Objective The aim of this study is to combine Raman spectroscopy and machine learning techniques to distinguish subgingival plaques among three groups of subjects,including patients with chronic periodontitis(CP)and type 2 diabetes mellitus(T2DM),patients with CP alone,and healthy controls.Methods The Raman spectra of the subgingival plaques from 20 patients with CP and T2DM(group A),23 patients with CP alone(group B),and 23 healthy controls(group C)were obtained using a portable Raman spectrometer.Eight common machine learning algorithms were applied to build models to distinguish the Raman spectra of the three types of subgingival plaques.Results The model identified as optimal for distinguishing the three types of subgingival plaques was linear discriminant analysis(LDA).The optimal model to distinguish groups A and B is LDA,groups A and C is extra trees(ET),and groups B and C group is LDA.Conclusion The proposed classification model based on Raman spectroscopy and machine learning algorithms can distinguish subgingival plaques among patients with CP and T2DM,with CP alone,and healthy controls.This technique can be used in future clinical practice as a screening or diagnostic tool.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62