检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘辉[1] 杨照华[1] 吴云[2] 赵梓栋 余远金 LIU Hui;YANG Zhaohua;WU Yun;ZHAO Zidong;YU Yuanjin(Beihang University,Beijing 100191,China;Beijing Institute of Control Engineering,Beijing 100094,China;Beijing Institute of Technology School,Beijing 100081,China)
机构地区:[1]北京航空航天大学,北京100191 [2]北京控制工程研究所,北京100094 [3]北京理工大学,北京100081
出 处:《空间控制技术与应用》2023年第6期68-76,共9页Aerospace Control and Application
基 金:国家自然科学基金资助项目(61973018);北京控制工程研究所空间光电测量与感知实验室开放基金资助(LabSOMP-2022-04)。
摘 要:单像素成像是一种仅需要使用无分辨能力的桶探测器结合空间光调制信息就能重构出一副完整图像的成像方式,具有非局域成像和高灵敏的特点,适合在外太空非合作目标下进行超远距离成像探测,但需要多次空间光调制后进行探测,重构图像信噪比低.本文提出一种基于全局注意力机制的低采样率下图像增强方法,利用Transformer结构搭建新型的SUNet(swin transformer unet)网络,解决传统卷积神经网络平移不变性和无法获得全局感受野的问题.根据切蛋糕(cake-cutting, CC)序改进的差分鬼成像算法在低采样条件下重构出低质量的图像,使用SUNet对图像进行增强.实验结果表明,该方法与2022年提出的GIDC(ghost imaging using deep neural network constraint)方法相比,在0.1的采样率下,峰值信噪比提升了3.29 dB,结构相似度提升了8%,为单像素成像的空间探测提供了新的技术途径.Single-pixel imaging is an imaging technique that reconstructs a complete image using only non-resolving bucket detectors combined with spatial light modulation information.It features non-local imaging and high sensitivity,making it suitable for ultra-long-distance imaging and detection of non-cooperative targets in outer space.However,it requires multiple spatial light modulations for detection,resulting in low signal-to-noise ratio in the reconstructed images.A global attention mechanism-based image enhancement method for low-sampling rates is presented in this paper.A novel SUNet(swin transformer unet)network is built via Transformer architecture to address the issues of translational invariance and limited global receptive field in traditional convolutional neural networks.Improved differential ghost imaging algorithm based on CC(cake-cutting)sequence is employed to reconstruct low-quality images under low sampling conditions,which are then enhanced by SUNet.Experimental results show that,compared to the GIDC(ghost imaging using deep neural network constraint)method proposed in 2022,this approach achieves 3.29 dB improvement in peak signal-to-noise ratio and 8%increase in structural similarity at 0.1 sampling rate,providing a new technological avenue for spatial detection in single-pixel imaging.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15