检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦洪懋 叶宏伟 崔庆佳 徐彪 胡满江[1,2] QIN Hongmao;YE Hongwei;CUI Qingjia;XU Biao;HU Manjiang(State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle,College of Mechanical and Vehicle Engineering,Hunan University,Changsha,Hunan 410082,China;Wuxi Intelligent Control Research Institute of Hunan University,Wuxi,Jiangsu 214115,China)
机构地区:[1]湖南大学机械与运载工程学院整车先进设计制造技术全国重点实验室,湖南长沙410082 [2]湖南大学无锡智能控制研究院,江苏无锡214115
出 处:《控制与信息技术》2023年第6期51-57,共7页CONTROL AND INFORMATION TECHNOLOGY
基 金:国防基础科研计划项目(JCKY2022110C072);湖南省科技重大专项项目(2020GK1020);湖南省自然科学基金项目(2021JC0010)。
摘 要:自主水下机器人(AUV)动态目标跟踪技术是实现目标探测、目标侦察等任务的核心技术之一。为了跟踪机动目标,通常采用基于交互多模型(IMM)算法结合恒定速度(CV)模型和协同转弯(CT)模型;而IMM中的转移概率和CT模型中转弯速率通常根据先验信息固定,可能会导致状态估计不准确。为此,文章基于现有的自适应IMM算法,提出了一种可以自适应调整转移概率的并行IMM算法(APIMM)并结合无迹卡尔曼滤波算法(UKF)对水下三维空间中的机动目标进行状态预测,改进算法基于的模型集选择了CV模型,自适应转弯速率的三维固定中心恒定速率和转向速率(CSCTR)模型和当前统计(CS)模型。仿真结果表明,该算法能更大程度地利用后验信息,拥有更快的模型切换速度,能够对三维空间水下动态目标的状态进行预测,并且预测精度提升了约15%。Dynamic target tracking is a crucial technique for autonomous underwater vehicles(AUV),enabling key operations such as target detection and reconnaissance.Standard approaches for tracking maneuvering targets often involve the interacting multiple model(IMM)algorithm which integrates the constant velocity(CV)model and the coordinated turn(CT)model.However,these models traditionally utilize fixed transition probabilities and turn rates based on prior information,potentially leading to imprecise state estimations.In response to this,the paper introduces an adaptive parallel IMM(APIMM)based on current adaptive IMM algorithms.This method adaptively adjusts transition probabilities and pairs with the unscented Kalman filter(UKF)algorithm for state prediction of maneuvering targets in a 3D underwater environment.The enhanced algorithm chooses from a model set that encompasses the CV model,the 3D fixed center constant speed and turning rate model(CSCTR)with an adaptive turn rate,and the current statistical(CS)model.Simulation outcomes have demonstrated that this algorithm utilizes posterior information more effectively,possesses an accelerated model switching speed,and improves the prediction accuracy of the underwater dynamic target's state in three-dimensional space by approximately 15%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145