骨骼信息的人体行为识别综述  被引量:3

A review of skeleton-based human action recognition

在线阅读下载全文

作  者:卢健[1] 李萱峰 赵博 周健[1] Lu Jian;Li Xuanfeng;Zhao Bo;Zhou Jian(School of Electronics and Information,Xi’an Polytechnic University,Xi’an 710600,China)

机构地区:[1]西安工程大学电子信息学院,西安710600

出  处:《中国图象图形学报》2023年第12期3651-3669,共19页Journal of Image and Graphics

基  金:国家自然科学基金项目(61971339,62101419);西安市碑林区应用技术研发项目(GX2007)。

摘  要:基于骨骼信息的人体行为识别旨在从输入的包含一个或多个行为的骨骼序列中,正确地分析出行为的种类,是计算机视觉领域的研究热点之一。与基于图像的人体行为识别方法相比,基于骨骼信息的人体行为识别方法不受背景、人体外观等干扰因素的影响,具有更高的准确性、鲁棒性和计算效率。针对基于骨骼信息的人体行为识别方法的重要性和前沿性,对其进行全面和系统的总结分析具有十分重要的意义。本文首先回顾了9个广泛应用的骨骼行为识别数据集,按照数据收集视角的差异将它们分为单视角数据集和多视角数据集,并着重探讨了不同数据集的特点和用法。其次,根据算法所使用的基础网络,将基于骨骼信息的行为识别方法分为基于手工制作特征的方法、基于循环神经网络的方法、基于卷积神经网络的方法、基于图卷积网络的方法以及基于Transformer的方法,重点阐述分析了这些方法的原理及优缺点。其中,图卷积方法因其强大的空间关系捕捉能力而成为目前应用最为广泛的方法。采用了全新的归纳方法,对图卷积方法进行了全面综述,旨在为研究人员提供更多的思路和方法。最后,从8个方面总结现有方法存在的问题,并针对性地提出工作展望。Skeleton-based human action recognition aims to correctly analyze the classes of actions from skeleton sequences,which contain one or more actions.Skeleton-based human action recognition has recently emerged as a hot research topic in the field of computer vision.Due to the fact that actions can be used to handle tasks and express human emotions,action recognition can be widely applied in various fields,such as intelligent monitoring systems,humancomputer interaction,virtual reality,and smart healthcare.Compared with RGB-based human action recognition,skeleton-based human action recognition methods are less affected by interference factors,such as background and human appearance,and have higher accuracy and robustness.In addition,these methods require a small amount of data and show a high computational efficiency,thereby increasing their prospects in practical applications.In this case,comprehensively and systematically summarizing and analyzing skeleton-based human action recognition methods become critical.Com⁃pared with other reviews on skeleton-based action recognition,our contributions are as follows:we provide a more compre⁃hensive summary of skeleton-based action datasets;we provide a more comprehensive summary of skeleton-based action recognition methods,including the latest Transformer technology;we offer a more instructive classification of graph convo⁃lutional methods;and we not only summarize the existing problems but also forecast the prospects for future research.First,we introduce nine datasets that are commonly used for skeleton-based action recognition,including the MSR Action3D,MSR Daily Activity 3D,3D Action Pairs,SYSU 3DHOI,UTD-MHAD,Northwestern-UCLA,NTU RGB+D 60,Skeleton-Kinetics,and NTU RGB+D 120 datasets.In order to highlight the characteristics of these datasets promi⁃nently,we divide them into single-view and multi-view datasets from the data collection perspective and then explore the traits and uses of each category.Second,based on the backbone network used by the models,we cat

关 键 词:行为识别 骨骼信息 数据集 深度学习 图卷积网络(GCN) 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象