组合KdV方程孤立波解的轨道稳定性  

Orbital Stability of Solitary Wave Solutions to the Compound KdV Equations

在线阅读下载全文

作  者:王琳 刘自强 欧阳自根 刘耿华 WANG Lin;LIU Ziqiang;OUYANG Zigen;LIU Genghua(Basic Department,Hunan Institute of Traffic Engineering,Hengyang,Hunan 421001,China)

机构地区:[1]湖南交通工程学院基础部,湖南衡阳421001

出  处:《南华大学学报(自然科学版)》2023年第5期87-91,共5页Journal of University of South China:Science and Technology

摘  要:组合KdV方程在物理学的许多领域都有应用,例如等离子体磁流波、离子声波等。粒子在传输过程中需要刻画其稳定性。本文主要通过平移变换,将研究带有非零渐近值的孤立波解的轨道稳定性,转化为研究具有零渐进值孤立波解的轨道稳定性,给出了稳定性的判定定理,应用Grillakis-Shatah-Strauss提出的轨道稳定性理论与谱分析理论得到了组合KdV方程的几种孤立波解的轨道稳定性结论。The compound KdV equation is applied in many fields of physics,such as plasma magnetic current wave,ion acoustic wave and so on.It is necessary to characterize the stability of particles during their propagation.The study of the orbital stability of solitary wave solutions with non-zero asymptotic values is transformed into the study of orbital stability of solitary wave solutions with zero asymptotic values through translation transformation,and the determination theorem of stability is given.The orbital stability theory proposed by Grillakis-Shatah-Strauss and the spectral analysis theory are used to obtain the orbital stability conclusions of the compound KdV equations for several solitary wave solutions.

关 键 词:组合KDV方程 非零渐近值 轨道稳定性 孤立波 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象