基于双目视觉的车前行人检测方法研究  被引量:1

Research on Pedestrian Detection Method in Front of Vehicle Based on Binocular Vision

在线阅读下载全文

作  者:王正家[1,2] 王思宇 景嘉宝 WANG Zhengjia;WANG Siyu;JING Jiabao(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China;Hubei Key Laboratory of Modern Manufacturing Quality Engineering,Wuhan 430068,China)

机构地区:[1]湖北工业大学机械工程学院,湖北武汉430068 [2]现代制造质量工程湖北省重点实验室,湖北武汉430068

出  处:《无线电工程》2024年第1期14-23,共10页Radio Engineering

基  金:国家自然科学基金(51275158)。

摘  要:当前的汽车安全辅助驾驶和无人驾驶汽车是图像领域的研究热点,针对汽车在启动或行驶时车前存在行人可能导致的安全问题,着重研究了基于双目视觉的车前行人检测方法。进行了双目相机的相机标定和立体标定;通过改进后半全局立体匹配算法获取深度图,确定车前行人所处位置的感兴趣区域(Region of Interest,ROI),剔除冗余的背景信息;分割并提取了图像的降维梯度直方图(Histogram of Gradients,HOG)特征信息;将特征输入到支持向量机(Support Vector Machine,SVM)分类器训练,检测并标记出车前的行人目标。实验证明,所提算法对车前场景下的动态行人可以更为有效地检测,具备更优的检率精度、时效性和鲁棒性。At present,vehicle safety assisted driving and autonomous vehicle are the research hotspots in the field of image.For the safety problems that may be caused by pedestrians in front of the vehicle when the vehicle is starting or running,the method of pedestrian detection in front of the vehicle based on binocular vision is studied.Firstly,the camera calibration and stereo calibration of binocular camera are carried out.Then,the depth map is obtained by an improved semi-global stereo matching algorithm to determine the Region of Interest(ROI)of the position of pedestrians in front of the vehicle and eliminate redundant background information.The feature information of the dimension reduction Histogram of Gradients(HOG)is segmented and extracted.The features are input into the Support Vector Machine(SVM)classifier for training,and the pedestrian targets in front of the vehicle are finally detected and marked.Experiments show that the proposed algorithm can detect dynamic pedestrians in front of vehicles more effectively,with better detection accuracy,timeliness and robustness.

关 键 词:行人检测 立体匹配 双目视觉 降维梯度直方图 支持向量机分类器 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象