检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李盛青 苏前敏[1] 黄继汉[2] LI Shengqing;SU Qianmin;HUANG Jihan(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Center for Drug Clinical Research,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China)
机构地区:[1]上海工程技术大学电子电气工程学院,上海201620 [2]上海中医药大学药物临床研究中心,上海201203
出 处:《中国医学物理学杂志》2024年第1期125-132,共8页Chinese Journal of Medical Physics
摘 要:目的:提出一种基于BioBERT预训练模型的纳排标准命名实体识别方法(BioBERT-Att-BiLSTM-CRF),可自动提取临床试验相关信息,为高效制定纳排标准提供帮助。方法:结合UMLS医学语义网络和专家定义方式,制定医学实体标注规则,并建立命名实体识别语料库以明确实体识别任务。BioBERT-Att-BiLSTM-CRF首先将文本转换为BioBERT向量并输入至双向长短期记忆网络以捕捉上下文语义特征;同时运用注意力机制来提取关键特征;最终采用条件随机场解码并输出最优标签序列。结果:BioBERT-Att-BiLSTM-CRF在纳排标准命名实体识别数据集上的效果优于其他基准模型。结论:使用BioBERT-Att-BiLSTM-CRF能更高效地提取临床试验的纳排标准相关信息,从而增强临床试验注册数据的科学性,并为临床试验纳排标准的制定提供帮助。Objective To present a named entity recognition method referred to as BioBERT-Att-BiLSTM-CRF for eligibility criteria based on the BioBERT pretrained model.The method can automatically extract relevant information from clinical trials and provide assistance in efficiently formulating eligibility criteria.Methods Based on the UMLS medical semantic network and expert-defined rules,the study established medical entity annotation rules and constructed a named entity recognition corpus to clarify the entity recognition task.BioBERT-Att-BiLSTM-CRF converted the text into BioBERT vectors and inputted them into a bidirectional long short-term memory network to capture contextual semantic features.Meanwhile,attention mechanisms were applied to extract key features,and a conditional random field was used for decoding and outputting the optimal label sequence.Results BioBERT-Att-BiLSTM-CRF outperformed other baseline models on the eligibility criteria named entity recognition dataset.Conclusion BioBERT-Att-BiLSTM-CRF can efficiently extract eligibility criteria-related information from clinical trials,thereby enhancing the scientific validity of clinical trial registration data and providing assistance in the formulation of eligibility criteria for clinical trials.
关 键 词:纳排标准 命名实体识别 双向长短期记忆网络 条件随机场 临床试验
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.167.79