检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程洁 郑远 李诚龙 江波[1] Cheng Jie;Zheng Yuan;Li Chenglong;Jiang Bo(College of Air Traffic Management,Civil Aviation Flight University of China,Guanghan 618307,China;College of Computer Science and Technology,Civil Aviation Flight University of China,Guanghan 618307,China;School of Electronic Information Engineering,Beihang University,Beijing 100191,China)
机构地区:[1]中国民用航空飞行学院空中交通管理学院,四川广汉618307 [2]中国民用航空飞行学院计算机学院,四川广汉618307 [3]北京航空航天大学电子信息工程学院,北京100191
出 处:《系统仿真学报》2024年第1期50-66,共17页Journal of System Simulation
基 金:中央高校基本科研业务费重点项目(ZJ2021-03);民航教育人才类项目(MHJY2022032);民航飞行技术与飞行安全重点实验室开放基金(FZ2021KF13)。
摘 要:无人机产业的迅猛发展促进了低空开放,形成了国内外城市超低空物流运输的浪潮,然而,现有的航迹规划算法没有考虑空域的划分方式与运行规则,不适用于城市超低空物流场景下多无人机的协同航迹规划,桎梏了超低空物流行业的发展。针对该问题,从实际需求出发,在空域高度层架构的基础上探索适用于城市超低空物流场景的多无人机协同航迹规划方法。将原问题分解为无人机-高度层任务分配与多无人机单高度层协同航迹规划两个相互耦合的子问题,并分别运用基于知识图谱的任务分配解法与基于粒子群算法的改进人工势场法对两个子问题进行求解。仿真实验表明,该方法在求解单高度层协同航迹规划子问题中不但能够避免传统方法的固有缺陷,平均迭代次数相较于对比方法也减少了62.09%;同时,仿真结果也表明所提方法可以快速鲁棒的解决原问题,为城市超低空物流场景提供了切实可行的多机航迹规划方法。The rapid development of the drone industry has promoted the opening of low-altitude,forming a wave of ultra-low-altitude air transportation in cities sweeping over the world.However,the existing trajectory planning algorithms do not consider the division method and operating rules of the ultra-low-altitude airspace.They are not suitable for the collaborative trajectory planning of multiple UAVs in the urban ultra-low-altitude air transportation scenario,which may restrict the development of the ultra-low-altitude air transportation industry.This paper explores a multi-UAV collaborative trajectory planning method for urban ultra-low-altitude air transportation scenario based on the airspace flight altitude layer architecture.Specifically,the paper decomposes the original problem into two coupled sub-problems:UAV flight altitude layer task assignment and multi-UAV single-altitude coordinated trajectory planning.It uses the task assignment solution based on mapping knowledge domains and the swarm-based improved artificial potential field method to solve these two sub-problems respectively.Simulation results show that the method can not only avoid the inherent defects of traditional methods in solving the cooperative trajectory planning sub-problem but also reduce the average number of iterations by 62.09%compared with the traditional method.At the same time,the simulation results also show that the proposed method solves the original problem fast and robustly,which can provide a feasible trajectory for multi-UAVs in urban ultra-low-altitude air transportation scenario.
关 键 词:航迹规划 任务分配 多无人机 知识图谱 人工势场 粒子群算法
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.209.231