检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张龙威 原璐琪 陈宁[1] 袁帅华[1] 张龙 ZHANG Longwei;YUAN Luqi;CHEN Ning;YUAN Shuaihua;ZHANG Long(College of Civil Engineering,Hunan University of Science and Technology,Xiangtan 411201,China;Hunan Provincial Key Lab of Structural Engineering for Wind Resistant and Vibration Control,Hunan University of Science and Technology,Xiangtan 411201,China)
机构地区:[1]湖南科技大学土木工程学院,湖南湘潭411201 [2]湖南科技大学结构抗风与振动湖南省重点实验室,湖南湘潭411201
出 处:《振动与冲击》2024年第1期20-27,共8页Journal of Vibration and Shock
基 金:国家自然科学基金项目(52378509);湖南省自然科学基金项目(2023JJ40290)。
摘 要:桥梁动态称重(bridge weigh-in-motion,BWIM)利用过桥车辆对桥梁产生的动力响应快速识别车辆轴质量。由于实测的动力响应包含测量误差,在一定程度上降低了传统BWIM算法的轴质量识别精度。为了解决这一问题,提出基于贝叶斯后验估计的桥梁动态称重算法。该算法考虑了测量误差对轴质量识别精度的影响,假设测量误差和轴质量服从高斯分布,利用测量误差的标准差和轴质量标准差得到能抑制测量误差的约束因子,推导出新的轴质量求解方程。基于数值仿真和实桥试验,分别得到传统BWIM算法和贝叶斯算法的轴质量识别精度,并进行对比分析。试验结果表明:相比于传统BWIM算法,贝叶斯算法能够有效抑制测量误差的影响,明显改善轴质量识别精度。Bridge weigh-in-motion(BWIM)algorithm can find vehicle axle weights with measured responses of a bridge acted by passing vehicles.However,since measured responses contain measurement errors,the accuracy of the traditional BWIM algorithm is reduced to a certain extent.Here,to solve this problem,a novel BWIM algorithm based on Bayesian posterior estimation was proposed.The proposed algorithm could consider negative effects of measurement errors on axle weight recognition accuracy.Firstly,it was assumed that measurement errors and axle weights both obey Gaussian distribution.Then,the standard deviation of measurement errors and axle weights’standard deviation were used to obtain constraint factor which could suppress measurement errors.Finally,the new solving equation of axle weight using BWIM algorithm based on Bayesian posterior estimation was derived.Based on numerical simulation and actual bridge tests,recognition accuracies of axle weights using the traditional BWIM algorithm and the proposed BWIM algorithm based on Bayesian posterior estimation were obtained,respectively.Both of them were analyzed contrastively.The results showed that compared to the traditional BWIM algorithm,the proposed BWIM algorithm based on Bayesian posterior estimation can effectively suppress effects of measurement errors,and obviously improve the recognition accuracy of vehicle axle weights.
关 键 词:桥梁动态称重(BWIM) 贝叶斯后验估计 最小二乘 测量误差 实桥试验
分 类 号:U446.1[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.126.72