检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《统计与决策》2024年第2期58-62,共5页Statistics & Decision
基 金:国家社会科学基金资助项目(20BTJ052);山东省社会科学规划研究项目(20CTJJ01)。
摘 要:众数回归模型估计的是在给定解释变量条件下响应变量的条件众数,而不是一般意义上的条件均值,因此可以揭示一般回归方法遗漏的重要结构。文章基于众数回归模型和提升回归树模型,提出了一个新的非参数众数回归模型:众数回归提升树(MRBT)模型。该模型一方面可以解决含有多元解释变量的非参数众数回归问题,另一方面采用Boosting技术解决了众数回归树模型预测性能差的问题。数值模拟和应用研究的结果表明:在任何分布中,MRBT模型显著优于线性众数回归和众数回归树模型;在数据呈对称分布时,MRBT模型与中位数回归提升树和均值回归提升树模型的表现相同;但在数据呈非对称分布或具有异常值时,MRBT模型显著优于中位数回归提升树和均值回归提升树模型。
关 键 词:众数回归 决策树 提升树 非参数 BOOSTING
分 类 号:O212.7[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.79