二维三次映射的混沌动力学  

Chaotic dynamics for two dimensional cubic mapping

在线阅读下载全文

作  者:陈凤娟 丁文豪 钟溢 CHEN Fengjuan;DING Wenhao;ZHONG Yi(School of Mathematical Sciences,Zhejiang Normal University,Jinhua 321004,China;College of Sciences,Ningbo University of Technology,Ningbo 315211,China)

机构地区:[1]浙江师范大学数学科学学院,浙江金华321004 [2]宁波工程学院理学院,浙江宁波315211

出  处:《浙江师范大学学报(自然科学版)》2024年第1期1-8,共8页Journal of Zhejiang Normal University:Natural Sciences

基  金:国家自然科学基金资助项目(11471289)。

摘  要:为了研究二维三次映射的混沌动力学,运用Moser定理和多项式零点斜率的性质,证明映射存在Smale马蹄,并且映射在不变集上拓扑共轭于三符号动力系统.计算不动点和2周期点的Lyapunov指数谱表明,它们的最大Lyapunov指数均大于零.Chaotic dynamics was investigated for a class of two dimensional cubic mapping.By Moser′s theorem,as well as the derivative properties on zeros of polynomial,the Smale horseshoe was proved for the two dimensional cubic mapping.Moreover,the cubic mapping on horseshoe was showed topologically conjugate to the shift map on sequence space of three symbols.The largest Lyapunov exponents at the fixed points and two periodic points were proved to be all positive.

关 键 词:二维三次映射 SMALE马蹄 Moser定理 混沌 

分 类 号:O193[理学—数学] O415.5[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象