基于轻量级YOLO-v4模型的变电站数字仪表检测识别  被引量:7

Detection and Recognition of Digital Instruments Based on Lightweight YOLO-v4 Model at Substations

在线阅读下载全文

作  者:华泽玺[1] 施会斌 罗彦[2] 张子原 李威龙 唐永川 HUA Zexi;SHI Huibin;LUO Yan;ZHANG Ziyuan;LI Weilong;TANG Yongchuan(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China;Chengdu Railway Bureau Group Corporation Chengdu Bullet Train Section,Chengdu 610051,China;School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,China;Qianghua Times(Chengdu)Technology Co.,Ltd.,Chengdu 610000,China;School of Big Data and Software Engineering,Chongqing University,Chongqing 401331,China)

机构地区:[1]西南交通大学信息科学与技术学院,四川成都611756 [2]成都铁路局集团公司成都动车段,四川成都610051 [3]西南交通大学电气工程学院,四川成都611756 [4]强华时代(成都)科技有限公司,成都610000 [5]重庆大学大数据与软件学院,重庆401331

出  处:《西南交通大学学报》2024年第1期70-80,共11页Journal of Southwest Jiaotong University

基  金:国家重点研发计划(2020YFB1711902)。

摘  要:为了在变电站实际场景中准确获取数字仪表读数,智能管控变电站的安全风险,同时推动变电站智能化发展,以实际场景中变电站数字仪表作为研究对象,综合考虑实时性及准确度等,提出一种基于轻量级YOLOv4模型的变电站数字仪表检测识别方法.首先,通过从鄂尔多斯变电站实际拍摄变电站数字仪表图像数据,使用Albumentations框架对数字仪表图像进行数据扩充,构建变电站数字仪表目标检测数据集;然后,以YOLO-v4网络为基础,结合注意力机制构建一个有效通道注意(efficient channel attention,ECA)改进的深度可分离卷积模块(ECA-bneck-m);最后,提出一个轻量级YOLO-v4模型,进行模型大小与性能的对比实验.实验结果表明:本文方法可以在几乎不损失检测准确度的情况下,将整个模型存储大小压缩为原先的1/5,同时将模型推理速度从24.0帧/s提升至36.9帧/s,其实时性能够满足实际变电站检测识别的工程需要.In order to accurately recognize the readings of digital instruments in the actual scene of substations,intelligently control substation security,and promote its intelligent development,the digital instruments in the substation are taken as the research object,and in view of real-time and accuracy,a lightweight YOLO-v4 model is proposed for the detection and recognition of digital instruments.Firstly,the digital instrument images captured from the Ordos substation are expanded by using the Albumentations framework,thus building an effective digital instrument data set for detection and recognition.After that,an efficient channel attention(ECA)-based deep separable convolution block(ECA-bneck-m)is constructed with attention mechanism,and further a lightweight YOLO-v4 model is proposed to conduct comparative experiments on model size and performance.Finally,experiments comparing model size and performance are performed.The results show that,the storage size of the model can be compressed by about 5 times nearly without loss of detection accuracy,and the processing speed of model can be increased from 24.0 frame/s to 36.9 frame/s,indicating that the proposed model can meet the requirements of real-time detection and recognition in the actual substation.

关 键 词:数字仪表 检测识别 YOLO-v4 数据增强 轻量化 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP183[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象