检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李然 叶晓飞[1] 洪钢 杨俊 郑彭军[1] LI Ran;YE Xiaofei;HONG Gang;YANG Jun;ZHENG Pengjun(Faculty of Maritime&Transportation,Ningbo University,Ningbo 315211;Ningbo Zhongtong Logistics Group Co.Ltd.,Ningbo 315000,China)
机构地区:[1]宁波大学海运学院,浙江宁波315211 [2]宁波中通物流集团有限公司,浙江宁波315000
出 处:《物流技术》2023年第12期49-58,共10页Logistics Technology
基 金:宁波市交通运输科技计划项目“突发事件下应急物资智能仓配一体化调配关键技术研究”(202214)。
摘 要:针对突发事件下多供应点到多需求点的多种物资配送问题,以配送总时间最少和总成本最小为优化目标,建立了考虑不确定因素的应急物资车辆路径优化模型。设计非支配排序遗传算法(Non-Dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ)对模型进行了求解,并根据2020年宁波市北仑区疫情下应急物资配送数据进行实例分析。结果表明,该模型可以解决多种应急物资配送问题,将NSGA-Ⅱ算法与遗传算法进行比较,采用NSGA-Ⅱ算法求解得到的总配送时间减少了26.04%,总配送成本节省了27.76%。In this paper,aiming at the dispatch problem of multi-variety materials from multiple supply points to multiple demand points in case of outbreak event,and with minimum total distribution time and minimum total cost as the optimization objectives,we constructed an emergency supplies vehicle route optimization model considering uncertain factors,designed a non-dominated sorting genetic algorithm II(NSGA-II)to solve the model,and had an example analysis based on the emergency supplies practice during the 2020 Covid-19 period in Beilun District,Ningbo City.The result showed that this model could solve the multi-variety emergency supplies distribution problem and compared to the genetic algorithm,the NSGA-II algorithm could save the total distribution time by 26.04%and the total cost by 27.76%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145