密集行人检测方法研究  被引量:1

Research on dense pedestrian detection method

在线阅读下载全文

作  者:吴泽 张忠民[1] WU Ze;ZHANG Zhongmin(School of Information and Communication Engineering,Harbin Engineering University,Harbin 150010,China)

机构地区:[1]哈尔滨工程大学信息与通信工程学院,哈尔滨150010

出  处:《哈尔滨商业大学学报(自然科学版)》2024年第1期19-24,44,共7页Journal of Harbin University of Commerce:Natural Sciences Edition

摘  要:针对现有行人检测算法面对遮挡、尺度不一等问题表现出来漏检率和误检率高的情况,提出一种基于改进YOLOv5的密集行人检测方法Improved-YOLOv5.采用改进BIFPN网络替换原有PANet,增强特征融合网络对于特征信息的利用率和对于小尺度行人的关注度.采用EIoU Loss替换原有CIoU Loss,提高模型的回归精度和收敛速度.提出一种新的后处理算法T-NMS,通过增加一个额外的阈值,提高模型对于密集场景下行人密度的区分能力,并在模型开销增加不大的前提下降低了漏检率.实验结果表明,在Citypersons数据集上,所提密集行人检测方法Improved-YOLOv5相比原YOLOv5算法在不同程度遮挡的子集上检测效果均有明显提升,尤其是高遮挡Heavy子集的MR-2降低了4.2%,达到53.1%,表明改进方法在密集行人检测中具有较好的性能.Aiming at the situation that existing pedestrian detection algorithms show high missed and false detection rates in the face of problems such as occlusion and different scales,an Improved pedestrian detection method based on improved YOLOv5 was proposed.The improved BIFPN network was used to replace the original PANet to enhance the feature fusion network s utilization rate of feature information and its attention to small-scale pedestrians.The original CIoU Loss was replaced by EIoU Loss to improve the regression accuracy and convergence speed of the model.A new post-processing algorithm T-NMS was proposed.By adding an extra threshold,the model can improve the ability to distinguish the density of pedestrians in dense scenes,and reduce the missing rate under the premise of a small increase in model overhead.The experimental results showed that compared with the original YOLOv5 algorithm in Citypersons dataset,the improved pedestrian detection method has improved significantly in detecting subsets with different degree of occlusion.Especially,the detection effect of Heavy subset with high occlusion was reduced by 4.2%to 53.1%.It was shown that the improved method has better performance in dense pedestrian detection.

关 键 词:行人检测 漏检 误检 YOLOv5 特征融合 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象