检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱凯 李理[1,2,3] 张彤 江晟 别一鸣 ZHU Kai;LI Li;ZHANG Tong;JIANG Sheng;BIE Yiming(School of Physics,Changchun University of Science and Technology,Changchun 130022,China;Centre for Opto/Bio-Nano Measurement and Manufacturing,Zhongshan Institute of Changchun University of Science and Technology,Zhongshan,Guangdong 528437,China;School of Electronical and Information Engineering,Changchun University of Science and Technology,Changchun 130022,China;Transportation College,Jilin University,Changchun 130012,China)
机构地区:[1]长春理工大学物理学院,长春130022 [2]长春理工大学中山研究院光电/生物纳米检测与制造中心,广东中山528437 [3]长春理工大学电子信息工程学院,长春130022 [4]吉林大学交通学院,长春130012
出 处:《计算机工程与应用》2024年第4期39-56,共18页Computer Engineering and Applications
基 金:吉林省科技发展计划重点研发项目(20210203214SF)。
摘 要:Transformer是一种革命性的神经网络模型架构,最初为自然语言处理而设计,但其由于卓越的性能,在计算机视觉领域获得了广泛的应用。虽然关于Transformer在自然语言处理领域的应用有大量的研究和文献,但针对低级视觉任务的综述相对匮乏。简要介绍了Transformer的原理并分析归纳了几种变体。在低级视觉任务的应用方面,将重点放在图像恢复、图像增强和图像生成这三个关键领域。通过详细分析不同模型在这些任务中的表现,探讨了它们在常用数据集上的性能差异。对Transformer在低级视觉领域的发展趋势进行了总结和展望,提出了未来的研究方向,以进一步推动Transformer在低级视觉任务中的创新和发展。这一领域的迅猛发展将为计算机视觉和图像处理领域带来更多的突破,为实际应用提供更加强大和高效的解决方案。Transformer is a revolutionary neural network architecture initially designed for natural language processing.However,its outstanding performance and versatility have led to widespread applications in the field of computer vision.While there is a wealth of research and literature on Transformer applications in natural language processing,there remains a relative scarcity of specialized reviews focusing on low-level visual tasks.In light of this,this paper begins by providing a brief introduction to the principles of Transformer and analyzing several variants.Subsequently,the focus shifts to the application of Transformer in low-level visual tasks,specifically in the key areas of image restoration,image enhancement,and image generation.Through a detailed analysis of the performance of different models in these tasks,this paper explores the variations in their effectiveness on commonly used datasets.This includes achievements in restoring damaged images,improving image quality,and generating realistic images.Finally,this paper summarizes and forecasts the development trends of Transformer in the field of low-level visual tasks.It suggests directions for future research to further drive innovation and advancement in Transformer applications.The rapid progress in this field promises break throughs for computer vision and image processing,providing more powerful and efficient solutions for practical applications.
关 键 词:TRANSFORMER 深度学习 注意力机制 计算机视觉 低级视觉任务
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.54.133