检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱昊宇 王俊杰[2] 杨一 朱新峰[1] ZHU Hao-Yu;WANG Jun-Jie;YANG Yi;ZHU Xin-Feng(School of Information Engineering,Yangzhou University,Yangzhou 225127,China;Beijing Key Laboratory of Big Data Technology for Food Safety,Beijing Technology and Business University,Beijing 100048,China)
机构地区:[1]扬州大学信息工程学院,扬州225127 [2]北京工商大学食品安全大数据技术北京市重点实验室,北京100048
出 处:《食品安全质量检测学报》2024年第1期85-91,共7页Journal of Food Safety and Quality
基 金:国家自然科学基金项目(32202144)。
摘 要:目的针对外观正常但内部存在不同程度霉变的花生,探索采用近红外高光谱成像技术结合机器学习方法构建花生内部霉变快速无损判别模型的可行性。方法采集100粒内部霉变和100粒健康花生的近红外高光谱图像构成数据集,将多种经典光谱预处理方法与支持向量机(support vector machine,SVM)组合建立花生内部霉变判别模型,并采用蒙特卡洛-无信息变量消除法(Monte Carlo-uninformative variable elimination,MC-UVE)找出霉变判别中有效的光谱特征波长。结果将Savitzky-Golay卷积平滑方法和二阶求导光谱预处理方法与SVM组合,对内部霉变严重样本判别的总体识别准确率可达95%,对不同程度内部霉变样本的平均识别准确率为88%;基于MC-UVE筛选得到10、5、3个特征波长构建的模型总体识别准确率为90%、85%和82%。结论实验结果表明高光谱技术结合机器学习可为花生内部霉变的快速、无损判别提供可行的解决方案,同时特征波长筛选为基于光电原理的霉变花生色选机系统开发提供了参考。Objective To investigate the feasibility of using near-infrared hyperspectral imaging technology combined with machine learning methods to construct a fast and non-destructive identification model for internal mold in peanuts with normal appearance but different degrees of mildew inside.Methods A dataset consisting of 100 peanuts with internal mold and 100 healthy peanuts were gathered,and their near-infrared hyperspectral images were collected.Support vector machine(SVM)combined with several spectral preprocessing methods was established for internal mold discrimination in peanuts.The Monte Carlo-uninformative variable elimination(MC-UVE)method was used to find effective feature wavelengths for mold discrimination.Results By combining Savitzky-Golay convolution smoothing method and the second-order derivative spectral preprocessing method with SVM,the overall identification accuracy for severe internal mold discrimination reached 95%,with an average identification accuracy of 88%for peanuts with different degrees of internal mold.Based on MC-UVE screening,the discrimination model constructed using 10,5,and 3 feature wavelengths achieved overall identification accuracies of 90%,85%,and 82%,respectively.Conclusion The experimental results demonstrate that the combination of hyperspectral technology and machine learning provides a feasible solution for the rapid and non-destructive discrimination of internal mold in peanuts.The selection of feature wavelengths provides a reference for the development of moldy peanut sorting machine systems based on photoelectric principles.
关 键 词:内部霉变花生 近红外高光谱 支持向量机 蒙特卡洛-无信息变量消除法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3