检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董翔宇 索浩银 黄杰 靳路康 朱俊 吴永恒 王子磊[2] Dong Xiangyu;Suo Haoyin;Huang Jie;Jin Lukang;Zhu Jun;Wu Yongheng;Wang Zilei(State Grid Anhui Electric Power Company Limited,Hefei 230061,Anhui,China;University of Science and Technology of China,Hefei 230027,Anhui,China)
机构地区:[1]国网安徽省电力有限公司,安徽合肥230061 [2]中国科学技术大学,安徽合肥230027
出 处:《计算机应用与软件》2024年第2期93-99,共7页Computer Applications and Software
基 金:国家电网有限公司科技项目(52120319000C)。
摘 要:针对变电站异常数据量少、难以支撑深度神经网络训练的问题,以变压器的呼吸器油位计识别问题为例,提出一种融合虚拟数据和语义分割的呼吸器油位计异常检测方法,目标是提升变压器状态监测的识别能力。具体地,构建融合语义分割和分类器的异常检测模型,通过油位计图像的语义分割获取具有空间语义信息的特征,同时采用分类器获得准确的异常状态类别;提出融合虚拟数据和真实数据的模型训练方法,通过调整两种类型数据的比例,实现在少量真实数据下模型的有效训练。实验结果表明,虚拟数据能够有效缓解真实数据不足的问题,且该方法相比采用DCNN模型的直接分类,能够达到更高的异常检测精度。To tackle the scarcity of abnormal data in the substation for training deep neural networks,we particularly consider the identification of transformer respirator oil level gauge in this paper,and propose a semantic segmentation guided abnormality detection method with synthetic data.Specifically,an anomaly detection model integrating semantic segmentation and classifier was constructed.The semantic segmentation model could extract rich features with spatial semantic information of the input image,and meanwhile the classifier could predict accurately abnormal state category.Moreover,we proposed a training method integrating synthetic data and real data.Through adjusting the proportion of the two types of data,we could effectively train the model even with a small amount of real data.The experimental results show that the synthetic data can effectively alleviate the insufficient problem of real data,and the proposed method can achieve higher accuracy than directly using DCNN classification model.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7