改进密集连接网络的胸部多疾病X光图像分类算法  

Improved chest multi-disease X-ray image classification algorithm for densely connected networks

在线阅读下载全文

作  者:师茹 谷宇[1] 张祥松[1,2] 贾成一 贺群 SHI Ru;GU Yu;ZHANG Xiangsong;JIA Chengyi;HE Qun(Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing,Information Engineering School,Inner Mongolia University of Science and Technology,Baotou 014010,China;BOE Technology Group Co.,Ltd,Beijing 100176,China;China Second Metallurgy Group Corporation Limited,Baotou 014010,China;Liberal Arts and Law School,Inner Mongolia University of Science and Technology,Baotou 014010,China)

机构地区:[1]内蒙古科技大学信息工程学院内蒙古自治区模式识别与智能图像处理重点实验室,内蒙古包头014010 [2]京东方科技集团股份有限公司,北京100176 [3]中国二冶集团有限公司,内蒙古包头014010 [4]内蒙古科技大学文法学院,内蒙古包头014010

出  处:《内蒙古科技大学学报》2023年第4期377-382,共6页Journal of Inner Mongolia University of Science and Technology

基  金:国家自然科学基金资助项目(62001255,61841204);中央引导地方科技发展资金资助项目(2021ZY0004);内蒙古自治区高等学校青年科技英才支持资助项目(NJYT23057);内蒙古科技大学基本科研业务费专项资金资助项目(042);内蒙古自治区自然科学基金资助项目(2019MS06003,2015MS0604);内蒙古自治区高等学校科学技术研究基金资助项目(NJZY145);教育部“春晖计划”合作科研资助项目.

摘  要:为改变高度依赖人工读胸片的传统诊疗方式,关注疾病之间关联性,实现多病种自动识别,缓解医学影像诊断压力,减少误诊和漏诊,针对胸部疾病多标签分类提出了DS-EANet121模型.在DenseNet121网络的基础上采用动态激活函数,使变化的输入不断适应网络;引用SoftPool最大程度保留特征信息,并且为关注到更多的局部特征,融合ECA注意力机制,在适当跨信道交互的同时提升模型的性能.最终得到平均AUC为0.897,平均ACC为0.842.实验结果表明:改进后的DS-EANet121较原始网络分类精度上有明显提升,有一定的临床应用价值.In order to change the traditional diagnosis and treatment methods that are highly dependent on manual reading of chest radiographs,the correlation between diseases was amalyzed to identify multipke diseases automatially.This can relieve the pressure of medical imaging diagnosis,and reduce misdiagnosis and missed diagnosis.The DS-EANet121 model was proposed for the multi-label classification of chest diseases,and the dynamic activation function was used on the basis of the DenseNet121 network to continuously adapt the changing inputs to the network.SoftPool was refered to maximize the retention of feature information.More local features was considered,the ECA attention module was integrated to improve the performance of the model while appropriating cross-channel interaction.The average AUC was 0.897 and the average ACC was 0.842.The experimental results show that the improved DS-EANet121 has obviously improved the classification accuracy compared with the original network,and has certain clinical application value.

关 键 词:医学图像分类 胸部X光图像 胸部多疾病 

分 类 号:TP394.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象