检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹衍楚 邹永久[1] 杜太利[1] 张跃文[1] YIN Yan-chu;ZOU Yong-jiu;DU Tai-li;ZHANG Yue-wen(Marine Engineering College,Dalian Maritime University,Dalian Liaoning 116026,China)
机构地区:[1]大连海事大学轮机工程学院,辽宁大连116026
出 处:《计算机仿真》2024年第1期548-553,共6页Computer Simulation
基 金:国家自然科学基金(52101400,52101345)。
摘 要:船舶低温淡水系统作为保障船舶动力装置安全运行的动力系统,一旦发生故障仅依靠轮机员很难及时排除故障。针对支持向量机(support vector machine,SVM)在模式识别方面受自身参数选择影响较大的问题,提出了基于麻雀搜索算法(sparrow search algorithm,SSA)优化支持向量机的故障诊断方法。利用麻雀搜索算法(SSA)优化了支持向量机的惩罚参数和核参数,建立了基于SSA-SVM的船舶低温淡水系统故障诊断模型。结果表明,SSA-SVM诊断模型比传统的支持向量机(SVM)和粒子群算法(particle swarm optimization,PSO)优化的支持向量机诊断模型的准确率分别高28%和5%,且收敛速度更快。SSA-SVM算法对船舶低温淡水系统的常见故障进行有效地诊断,能为轮机设备的健康管理及轮机员的诊断决策提供一定的指导。As a power system to ensure the safe operation of the ship's power plant,the ship's fresh water coolingsystem is difficult to troubleshoot in time only by the engineer crew once a failure occurs.Aiming at the problem that the support vector machine(SVM)is greatly affected by its own parameter selection in pattern recognition,a fault diagnosis method based on sparrow search algorithm(SSA)optimized support vector machine was proposed.The SSA was used to optimize the penalty parameters and kernel parameters of support vector machine,and the fault diagnosis model of ship lowfresh water coolingsystem based on SSA-SVM was established.The results show that the accuracy of SSA-SVM model is 28%and 5%higher than that of traditional SVM and particle swarm optimization(PSO),respectively,and the convergence rate is faster.The SSA-SVM algorithm can effectively diagnose the common faults of the ship's fresh water cooling system,and can provide certain guidance for the health management of marine equipment and the diagnostic decision of the engineer.
分 类 号:U664[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.23