检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谈玲[1] 康瑞星 夏景明[3] 王越 TAN Ling;KANG Ruixing;XIA Jingming;WANG Yue(School of Computer Science,Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Software,Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing 210044,China)
机构地区:[1]南京信息工程大学计算机学院,南京210044 [2]南京信息工程大学软件学院,南京210044 [3]南京信息工程大学人工智能学院,南京210044
出 处:《电子与信息学报》2024年第2期503-517,共15页Journal of Electronics & Information Technology
摘 要:高精度光伏功率预测对提高电力系统运行效率具有重要意义。光伏功率受多种因素影响,其中云层的变化是最主要的不确定因素。传统光伏功率预测方法没有充分考虑云的3维结构和气象要素对光伏功率的影响。因此,该文提出一种融合多源异构气象数据的多源变量光伏功率预测模型(MPPM)。MPPM的核心包括时空条件扩散模型(STCDM)、注意力堆叠LSTM网络(ASLSTM)和多维特征融合模块(MFFM)。STCDM模型通过对2维卫星云图进行精确预测,消除了云层边界处的模糊现象。ASLSTM模型则提取了3维天气研究与预报模式(WRF)气象要素特征。MFFM模块将2维卫星云图特征和3维WRF气象要素特征进行融合,以得到未来1 h光伏功率预测结果。该文分别利用STCDM模型和MPPM模型开展卫星云图预测实验和光伏功率预测实验。实验结果显示,STCDM模型预测1 h内卫星云图的结构相似性指数(SSIM)达到0.914,MPPM模型预测1 h内光伏功率的相关系数(CORR)达到0.949,优于所有对比算法。High-precision photovoltaic power prediction is of great significance for improving the operation efficiency of power system.Photovoltaic power is affected by many factors,among which cloud change is the most important uncertain factor.However,the traditional photovoltaic power prediction methods do not fully consider the influence of cloud three-dimensional structure and meteorological factors on photovoltaic power.To solve this problem,a Multi-source variables Photovoltaic power Prediction Model(MPPM)based on integrating multi-source heterogeneous meteorological data is proposed.The core of MPPM includes SpatioTemporal feature Conditional Diffusion Model(STCDM),Attention Stacked LSTM network(ASLSTM)and Multidimensional Feature Fusion Module(MFFM).STCDM accurately predicts the two-dimensional satellite cloud image,eliminating the blurring phenomenon at the cloud boundary.ASLSTM extracts the threedimensional Weather Research and Forecasting model(WRF)meteorological element features.MFFM fuses the two-dimensional satellite cloud image features and three-dimensional WRF meteorological element features to obtain the photovoltaic power prediction results for the next 1 h.In this paper,satellite cloud image prediction experiment and photovoltaic power prediction experiment are carried out by using STCDM model and MPPM model respectively.The results show that the Structural SIMilarity index(SSIM)of STCDM in satellite cloud image prediction within 1 h is up to 0.914,and the CORRelation index(CORR)of MPPM in photovoltaic power prediction within 1 h is up to 0.949,which are superior to all comparison algorithms.
关 键 词:多源数据 扩散模型 堆叠长短期记忆 注意力机制 特征提取
分 类 号:TN911.7[电子电信—通信与信息系统] TP183[电子电信—信息与通信工程] TM615[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127