检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹佳 黄茜 陈翔[2] 陈晨 陈锂 张涛 徐成 黄亚平 郭鹏程 文红 YIN Jia;HUANG Qian;CHEN Xiang;CHEN Chen;CHEN Li;ZHANG Tao;XU Cheng;HUANG Yaping;GUO Pengcheng;WEN Hong(Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation,Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test,Hubei Provincial Institute for Food Supervision and Test,Wuhan 430075,China;School of Computer Science and Artificial Intelligence,Wuhan University of Technology,Wuhan 430070,China;School of Sciences,Wuhan University of Technology,Wuhan 430070,China)
机构地区:[1]湖北省食品质量安全监督检验研究院,国家市场监管重点实验室(动物源性食品中重点化学危害物检测技术),湖北省食品质量安全检测工程技术研究中心,湖北武汉430075 [2]武汉理工大学计算机与人工智能学院,湖北武汉430070 [3]武汉理工大学理学院,湖北武汉430070
出 处:《食品科学》2024年第3期176-184,共9页Food Science
基 金:“十三五”国家重点研发计划重点专项(2018YFC1603602)。
摘 要:针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型进行预测;在区间估计部分,使用广义自回归条件异方差(generalized autoregressive conditional heteroskedast,GARCH)模型对残差进行预测。本实验将建立的WPD-ARIMA-GARCH组合模型运用于某地区酱卤肉制品的风险预测,结果表明2019年的3月底和7月底该地区的酱卤肉制品安全风险较高,与实际情况相符;同时,该模型在10个不同地区的酱卤肉制品风险预测中,均方误差、平均绝对误差和平均绝对百分比误差分别为1.626、0.806和20.824;其90%置信区间的预测区间平均宽度和覆盖宽度标准值均为0.024,可以覆盖所有真实值。该模型具有较高的预测精度和较低的误差,能对酱卤肉制品质量安全起到风险防控作用,可为日常食品安全监管提供相应的技术支持。In view of the drawback of traditional deterministic prediction that it cannot provide uncertainty information,this study proposed a prediction model that integrates point estimation and interval estimation,and innovatively applied it to the field of food safety risk pre-warning.In the point estimation,wavelet packet decomposition(WPD)was used to decompose the weekly risk level sequence and the autoregressive integrated moving average(ARIMA)model was used for prediction.In the interval estimation,the generalized autoregressive conditional heteroskedastic(GARCH)model was used to predict the residual.The WPD-ARIMA-GARCH model established in this study was applied to the safety risk prediction of soy sauce and pot-roast meat products from a certain region.The results showed that the safety risk of soy sauce and pot-roast meat products from this region was relatively high at the end of March and July in 2019,which was consistent with the actual situation.Meanwhile,in the risk prediction of soy sauce and pot-roast meat products from 10 different regions,the mean square error,mean absolute error,and mean absolute percentage error of the model were 1.626,0.806,and 20.824,respectively,and the prediction interval normalized average and coverage width-based criterion values at the 90%confidence interval were both 0.024,which could cover all true values.Therefore,the model has high prediction accuracy and low error,is useful for risk control for the quality and safety of soy sauce and pot-roast meat products,and provide technical support for daily food safety supervision.
关 键 词:酱卤肉制品 小波包分解 差分自回归移动平均模型 广义自回归条件异方差模型 区间估计
分 类 号:TS207.7[轻工技术与工程—食品科学] TP391[轻工技术与工程—食品科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.65.132