检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁凤源 梅红岩[1] 温民伟 白杨 吴帅甫 YUAN Feng-yuan;MEI Hong-yan;WEN Min-wei;BAI Yang;WU Shuai-fu(School of Electronics&Information Engineering,Liaoning University of Technology,Jinzhou 121001,China)
机构地区:[1]辽宁工业大学电子与信息工程学院,辽宁锦州121001
出 处:《辽宁工业大学学报(自然科学版)》2024年第1期6-10,17,共6页Journal of Liaoning University of Technology(Natural Science Edition)
摘 要:随着信息技术和智能应用的迅速发展,现今社会面临着大量数据和信息过载的挑战。为解决这一难题,基于会话的推荐方法应运而生。基于深度学习的会话推荐方法利用其强大的表示学习能力,更准确地预测用户的短期兴趣,并提供个性化的推荐服务。故综述了深度学习会话推荐方法的研究进展,包括基于卷积神经网络、图神经网络、注意力机制、多层感知器、混合模型等方法。总结了研究难点和未来研究方向。随着深度学习技术的不断进步,会话推荐方法将在实际应用中发挥越来越重要的作用。As information technology and intelligent applications continues to advance quickly,today’s society is facing challenges such as data and information overload.To solve this problem,conversation-based recommendation methods have emerged.Based on deep learning,these methods use their powerful representation learning ability to more accurately predict users’short-term interests and provide personalized recommendation services.This article reviews the research progress of deep learning-based conversation recommendation methods,including methods based on convolutional neural networks,graph neural networks,attention mechanisms,multi-layer perceptrons,and hybrid models.The article summarizes the research challenges and future directions.As deep learning technology continues to make progress,conversation-based recommendation methods are expected to become increasingly important in practical applications.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249