检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶彦斐[1] 程立 侯翔一 Ye Yanfei;Cheng Li;Hou Xiangyi(College of Energy and Electrical Engineering,Hohai University,Nanjing 21l106,China)
出 处:《国外电子测量技术》2023年第12期70-76,共7页Foreign Electronic Measurement Technology
摘 要:钢轨正常工作是铁路安全运营的重要保障,开展钢轨损伤检测研究具有重要的意义。钢轨的损坏、裂纹和疲劳可能引发脱轨和事故,威胁乘客和货物的安全。传统的人工钢轨探伤存在判伤时间长、漏报率高等问题。基于改进的YOLO v5目标检测算法,对铁路行业的钢轨超声波B显图像进行伤损识别与分类研究。在YOLO v5网络结构中引入卷积注意力机制模块,基于一种改进的损失评价函数,以提高模型训练的速度和鲁棒性。同时,在样本集构建方面,改进马赛克(Mosaic)数据增强方法,随机粘贴一个或多个样本小目标于另外样本对应出波区形成新样本,扩充B显图像数据集;基于数据迁移技术,将基于第3方钢轨超声波B显样本数据训练得到的模型参数作为模型训练的初始化参数以提升模型泛化性能。对实际标准样轨进行实验,可成功识别全部4类典型钢轨伤损,平均精度均值(mean average precision,mAP)mAP@0.5∶0.95达到了76.9%,验证了研究成果良好的快速性、准确性、鲁棒性和泛化性。The normal operation of steel rails is crucial for ensuring safe railway operations,making research on steel rail damage detection highly significant.Damages,cracks,and fatigue in steel rails can lead to derailments and accidents,posing a threat to the safety of passengers and cargo.Traditional manual steel rail inspections suffer from long inspection times and high miss rates.This study focuses on the identification and classification of damages in ultrasonic B-scan images of railway steel rails using an improved YOLO v5 object detection algorithm.The YOLO v5 network structure is enhanced by incorporating a convolutional block attention module(CBAM)and utilizing an improved loss evaluation function to improve training speed and robustness.In terms of dataset construction,the Mosaic data augmentation method is improved by randomly pasting one or more small target samples onto other samples in the corresponding wave area,expanding the B-scan image dataset.Additionally,data transfer techniques are employed to initialize the model training with the parameters obtained from training on third-party steel rail ultrasonic B-scan sample data,thereby enhancing model generalization performance.Experimental results on actual standard rail samples demonstrate successful identification of all four typical types of steel rail damages,achieving a mean average precision(mAP)of 76.9%for mAP@0.5:0.95.This validates the research findings in terms of their speed,accuracy,robustness,and generalization capabilities.
关 键 词:钢轨伤损 YOLO v5 深度学习 智能识别 目标检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.91.46