检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏璐露 程楠楠 WEI Lulu;CHENG Nannan(Information Engineering College,Jiangxi University of Technology,Nanchang 330029,China)
机构地区:[1]江西科技学院信息工程学院,江西南昌330029
出 处:《现代信息科技》2024年第4期171-174,179,共5页Modern Information Technology
基 金:江西省教育厅科学技术研究项目(GJJ2202609)。
摘 要:随着Web应用程序的普及,网络攻击和安全漏洞的风险日益增加。Web日志文件详细记录了网站运行信息,对日志中的流量进行分类从而检测出异常攻击流量是保障网页长期提供稳定、安全服务行之有效的方法之一。文中将Voting特征选择与Stacking集成相结合,构建了SVM-DT-MLP模型,并将其用于Web日志异常流量检测。测试结果表明,SVM-DT-MLP模型的性能显著优于单一算法模型,其Precision(精确度)达到92.44%,Recall(召回率)达到92.43%,F1-Score(F1值)达到92.44%。这意味着该模型能够有效地检测出异常攻击流量,并在保障网页提供稳定和安全服务方面具有很好的效果。With the popularity of Web applications,the risk of cyber attacks and security vulnerabilities is increasing.Web log files record the running information of websites in detail.Classifying the traffic in logs to detect abnormal attack traffic is one of the effective methods to ensure the long-term stability and security service provided by Web pages.In this paper,Voting feature selection and the Stacking integration are combined to construct the SVM-DT-MLP model,and it is used to detect abnormal traffic in Web logs.The test results show that the performance of SVM-DT-MLP model is significantly better than that of the single algorithm model,with the precision reaching 92.44%,the recall reaching 92.43%and the F1-Score reaching 92.44%.This means that the model can effectively detect abnormal attack traffic and has a good effect in ensuring stable and secure services provided by Web pages.
关 键 词:WEB日志 异常流量检测 Stacking集成 Voting特征选择 机器学习
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.107.92