基于主要驱动因子筛选法和深度学习算法的浙江省动态需水量预测  被引量:1

Forecast of dynamic water demand in Zhejiang Province based on main driving factor screening method and deep learning algorithm

在线阅读下载全文

作  者:许月萍[1] 曾田力 周欣磊 章鲁琪 王贝 王冬 XU Yueping;ZENG Tianli;ZHOU Xinlei;ZHANG Luqi;WANG Bei;WANG Dong(College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China;Zhejiang New Hydrological Technology Development and Operation Company,Hangzhou 310009,China;Zhejiang Hydrological Management Center,Hangzhou 310009,China)

机构地区:[1]浙江大学建筑工程学院,浙江杭州310058 [2]浙江水文新技术开发经营公司,浙江杭州310009 [3]浙江省水文管理中心,浙江杭州310009

出  处:《水利水电科技进展》2024年第2期47-53,共7页Advances in Science and Technology of Water Resources

基  金:浙江省自然科学基金重点项目(LZ20E090001);国家重点研发计划项目(2019YFC0408805)。

摘  要:收集了浙江省2000—2020年各用水行业需水量数据,采用基于Spearman秩相关分析的主要驱动因子筛选法筛选了影响各行业需水量的主要驱动因子,进而构造了改进的长短时记忆(LSTM)神经网络需水量预测模型,对各行业需水量进行动态滚动预测,并将改进LSTM模型的预测结果与传统单变量LSTM预测模型、卷积神经网络模型、支持向量回归模型的预测结果进行了对比。结果表明,基于主要驱动因子筛选法改进的LSTM模型能实时动态滚动预测各行业每年需水量,且预测结果精度高于其他3种模型。The water demand data of various water use industries in Zhejiang Province from 2000 to 2020 were collected,and the main driving factors affecting the water demand of each industry were screened using the main driving factor screening method based on Spearman rank correlation analysis.An improved long short-term memory(LSTM)neural network water demand prediction model was constructed to make dynamic rolling forecasts of the water demand of each industry,and the prediction results of the improved LSTM model were compared with those of the traditional univariate LSTM prediction model,convolutional neural network(CNN)model,and support vector regression(SVR)model.The results show that the LSTM model improved by the principal driving factor screening method can predict the annual water demand of each industry in real time and dynamically,and the prediction accuracy of the improved model is higher than that of the other three models.

关 键 词:需水量预测 主要驱动因子筛选法 LSTM神经网络 卷积神经网络 支持向量回归 浙江省 

分 类 号:TV213.4[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象