检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤昊宬 苏万春 冀秀元 信建峰[2] 夏松[2] 孙宇光[2] 徐毅[1] 沈文彬[2] TANG Haocheng;SU Wanchun;JI Xiuyuan;XIN Jianfeng;XIA Song;SUN Yuguang;XU Yi;SHEN Wenbin(Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;Beijing Shijitan Hospital,Capital Medical University,Beijing 100038,China)
机构地区:[1]中国科学院自动化研究所,北京100190 [2]首都医科大学附属北京世纪坛医院,北京100038
出 处:《医学信息学杂志》2024年第2期52-58,共7页Journal of Medical Informatics
基 金:科技创新2030——“新一代人工智能”重大项目(项目编号:2020AAA0105005);北京市科学技术委员会项目(项目编号:Z191100007619049)。
摘 要:目的/意义探讨人工智能技术应用于淋巴水肿患者电子病历非结构化文本数据的关键实体识别问题。方法/过程阐述样本稀缺背景下模型微调训练的解决方案,选取首都医科大学附属北京世纪坛医院淋巴外科既往收治患者594例为研究对象,依据临床医生标注的15种关键实体类别,微调GlobalPointer模型的预测层,借助其全局指针识别嵌套和非嵌套的关键实体。分析实验结果的准确性和临床应用可行性。结果/结论微调后模型总体精准率、召回率和Macro_F1均值分别为0.795、0.641和0.697,为淋巴水肿电子病历数据精准挖掘奠定基础。Purpose/Significance The paper discusses the application of artificial intelligence technology to the key entity recognition of unstructured text data in the electronic medical records of lymphedema patients.Method/Process It expounds the solution of model fine-tuning training under the background of sample scarcity,a total of 594 patients admitted to the department of lymphatic surgery of Beijing Shijitan Hospital,Capital Medical University are selected as the research objects.The prediction layer of the GlobalPointer model is fine-tuned according to 15 key entity categories labeled by clinicians,nested and non-nested key entities are identified with its global pointer.The accuracy of the experimental results and the feasibility of clinical application are analyzed.Result/Conclusion After fine-tuning,the average accuracy rate,recall rate and Macro_F 1 of the model are 0.795,0.641 and 0.697,respectively,which lay a foundation for accurate mining of lymphedema EMR data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222