检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭妍 武岳巍 林彦君[2] 殷复莲[1,2] 吴建宏[3] GUO Yan;WU Yuewei;LIN Yanjun;YIN Fulian;WU Jianhong(School of Information and Communication Engineering,Communication University of China,Beijing 100024,China;State Key Laboratory of Media Convergence and Communication,Communication University of China,Beijing 100024,China;Laboratory for Industrial and Applied Mathematics,York University,Toronto M3J1P3,Canada)
机构地区:[1]中国传媒大学信息与通信工程学院,北京100024 [2]中国传媒大学媒体融合与传播国家重点实验室,北京100024 [3]加拿大约克大学工业与应用数学实验室,多伦多M3J1P3
出 处:《中国传媒大学学报(自然科学版)》2023年第6期1-11,共11页Journal of Communication University of China:Science and Technology
基 金:北京自然科学基金(No.4232015)。
摘 要:社交网络中,研究谣言和辟谣在传播过程中的规律,有助于把握谣言信息传播趋势从而调节舆论走向。本文提出了一种基于情感因素和信任机制的S/E-F(D)-I(Susceptible/Educated-Forwarding(Defuting)-Immune)谣言/辟谣两阶段的传播动力学模型。模型基于传统的SFI(Susceptible-Forwarding-Immune)模型,分别研究谣言信息和相应辟谣信息的传播过程。在第一阶段谣言信息传播过程中考虑情感因素,进一步考察不同极性情感的动态演化过程;在第二阶段辟谣信息传播过程中考虑信任机制,进一步考察网民信任危机对辟谣信息传播的影响。两阶段模型均加入了受教育人群(E)探究辟谣信息相关教育程度及个人认知水平对信息传播的影响。基于已构建的S/E-F(D)-I动力学模型对新浪微博真实案例事件进行了数值拟合,刻画了真实舆情传播过程并验证了已有模型的有效性和合理性,通过参数敏感性分析挖掘影响谣言传播的重要因素,为制定谣言应对决策策略提供了支持。In social networks,studying the patterns of rumors and counter-rumor in propagations process can help to predict and understand the trend of rumor spreading and design optional inferrentions to guide the public option.Here,we proposed a novel emotion-based S/E-F(D)-I(Susceptible/Educated-Forwarding(Defuting)-Immune)two-stage rumor/counter-rumor propagation dynamics model.Our approach was based on the traditonal SFI(Susceptible-Forwarding-Immune)model,which was used to investigate the propagation process of rumor information and the corresponding counter-rumor information separately.However,our two stage model allowed us to examine the dynamic process of different polaritiese emotions by considering emotional factors in the rumor propagation at the first stage,and then incorporate trust mechanism to quantify the impact of confidence crisis on the dissemination of counter-rumor information at the second stage.Our model also incorparated the educated population(E)at both the 1st and 2nd stage to explore the influence of education and personal knowledge level on information dissemination in the relevant populations.We applied this constructed S/E-F(D)-I dynamics model to numerically fit and simulate some real case events on Sina Weibo to recover the real public opinion propagation process,and to validate the model.We perform sensitivity analysis to determine significant factors affecting rumor propagation in order to suppport the formulation of decision-making strategies for rumor management.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.145.200