检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵敏 王成荣 李苒 ZHAO Min;WANG Chengrong;LI Run(Shanxi Pharmaceutical Vocational College,Taiyuan,Shanxi 030006,China;Shanxi Agricultural University,Taiyuan,Shanxi 030031,China;Taiyuan University of Science and Technology,Taiyuan,Shanxi 030024,China)
机构地区:[1]山西药科职业学院,山西太原030006 [2]山西农业大学,山西太原030031 [3]太原科技大学,山西太原030024
出 处:《食品与机械》2024年第2期125-130,183,共7页Food and Machinery
基 金:山西省教育科学规划课题(编号:GH-220552)。
摘 要:目的:以阿克苏苹果为例,设计一种联合图像最优特征提取和改进RBF神经网络学习的苹果质量估计方法,以克服人工分级称重成本高、误差大的缺陷。方法:首先,建立苹果图像采集系统,得到苹果前景图像信息;其次,设计苹果图像特征集合最佳子集提取策略,将最佳子集提取过程转化为目标函数优化问题,并利用改进的离散蝗虫优化算法进行求解,从而得到最佳苹果图像特征子集;最后,构建基于RBF神经网络学习的苹果质量估计模型,将最佳特征子集作为网络输入,并采用蝗虫优化算法优化配置RBF神经网络超参数,从而实现对苹果质量的有效估计。结果:所提苹果质量估计方法精度更高,质量估计值平均相对误差率为1.23%。结论:该方法可以有效实现苹果质量预估,也能够推广应用到其他类似轴对称形状的水果质量估计。Objective:Taking Aksu apples as an example,a joint image optimal feature extraction and improved RBF neural network learning apple weight estimation method is designed to overcome the high cost and large error of manual grading and weighing.Methods:Firstly,an apple image acquisition system was established to obtain apple foreground image information.Secondly,the optimal subset extraction strategy for apple image feature sets was designed,by transforming the process of extracting the optimal subset into an objective function optimization problem,and an improved discrete locust optimization algorithm was designed to obtain the optimal apple image feature subset.Finally,a weight estimation model for apples based on RBF neural network learning was constructed,with the optimal feature subset as network input.The locust optimization algorithm was used to optimize the configuration of RBF neural network hyperparameters,to achieve effective estimation of apple weight.Results:The proposed apple weight estimation method had higher accuracy,with an average relative error rate of 1.23%for weight estimation.Conclusion:This method can effectively achieve apple weight estimation and can also be applied to other fruits with similar axisymmetric shapes for weight estimation.
关 键 词:苹果 图像处理 特征提取 RBF神经网络 蝗虫优化算法 质量估计 精度
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程] TS255.7[轻工技术与工程—农产品加工及贮藏工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.17.22