逆向形变场的雅可比行列式在形变配准算法评估中的应用  

Application of Jacobian determinant of reverse deformation field to evaluation of deformation registration algorithm

在线阅读下载全文

作  者:黎恩廷 郑万佳 连锦兴 朱伟婷 周酥 安雅琪 黄思娟[5] 杨鑫[5] Li Enting;Zheng Wanjia;Lian Jinxing;Zhu Weiting;Zhou Su;An Yaqi;Huang Sijuan;Yang Xin(Department of Radiology,Eighth Affiliated Hospital,Sun Yat-sen University,Shenzhen 518033,China;Department of Oncology,Southern Theater Air Force Hospital of People′s Liberation Army,Guangzhou 510050,China;Department of Radiotherapy,First Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510000,China;Guangzhou Xinhua College,School of Biomedical Engineering,Guangzhou,510520,China;Department of Radiotherapy,Sun Yat-sen University Cancer Center,State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy,Guangzhou 510060,China)

机构地区:[1]中山大学附属第八医院放射科,深圳518033 [2]中国人民解放军南部战区空军医院肿瘤科,广州510050 [3]广州中医药大学第一附属医院放疗科,广州510000 [4]广州新华学院生物医学工程学院,广州510520 [5]中山大学肿瘤防治中心、华南肿瘤学国家重点实验室、肿瘤医学协同创新中心、广东省鼻咽癌诊治研究重点实验室,广州510060

出  处:《中华放射医学与防护杂志》2024年第2期133-139,共7页Chinese Journal of Radiological Medicine and Protection

基  金:广东省基础与应用基础研究基金(2021A1515220140);中山大学肿瘤防治中心"青年优创"计划(QNYCPY32);全国大学生创新训练项目(202213902102,S202213902029,S202113902030);广东省食管癌研究所科技计划项目(Q202221,Q202311);北京市希思科临床肿瘤学研究基金(Y-Young2023-0156)。

摘  要:目的提出量化评估不同形变图像配准(DIR)算法的新指标,增加形变配准向临床实践进一步发展的可能。方法首先基于正向形变场(DVF)的雅可比行列式(JD)提出雅可比行列式均值(JDM),然后引入逆向DVF的JD,提出DVF雅可比行列式误差(DJDE)。在肺癌和鼻咽癌图像上采用光流场形变配准算法(OF-DIR)和快速弹性正则化Demons形变配准算法(FD-DIR)进行配准。最后使用JDM和DJDE,以及雅可比行列式负值百分比(JDNP)、逆一致性误差(ICE)及归一化均方误差(NMSE)进行配准算法评估。对比不同评估指标在不同肿瘤图像以及不同算法上的差异,并采用受试者工作特征曲线(ROC)进行分析。结果在肺癌中,OF-DIR的JDM、NMSE、DJDE和ICE均优于FD-DIR,差异具有统计学意义(z=-2.24、-4.84;t=4.01、6.54,P<0.05)。在鼻咽癌中,OF-DIR的DJDE、ICE和NMSE均优于FD-DIR,差异具有统计学意义(t=4.46、-7.49,z=-2.22,P<0.05),JDM差异无统计学意义(P>0.05)。在肺癌及鼻咽癌中,OF-DIR的JDNP均差于FD-DIR,差异具有统计学意义(z=-4.29、-4.02,P<0.01)。此外,DJDE在ROC曲线上更具特异性及敏感性(AUC=0.77),针对不同部位肿瘤图像有不同表现结果。结论JDM及DJDE是评估形变算法的有效指标,肺癌及鼻咽癌均适合使用OF-DIR,而FD-DIR在使用时需注意器官组织动度对配准效果的影响。Objective To effectively quantify and evaluate the quality of different deformation registration algorithms,in order to enhance the possibility of implementing deformation registration in clinical practice.Methods The Jacobian determinant mean(JDM)is proposed based on the Jacobian determinant(JD)of displacement vector field(DVF),and the Jacobian determinant error(DJDE)is introduced by incorporating the JD of the inverse DVF.The optical flow method(OF-DIR)and fast demons method with elastic regularization(FD-DIR)were tested on nasopharyngeal and lung cancer datasets.Finally,JDM and DJDE with the Jacobian determinant negative percentage(JDNP),inverse consistency error(ICE)and normalized mean square error(NMSE)were used to evaluate the registration algorithms and compare the differences evaluation indicators in different tumor images and different algorithms,and the receiver operating curve(ROC)was analyzed in evaluation.Results In lung cancer,OF-DIR outperformed FD-DIR in terms of JDM,NMSE,DJDE and ICE,and the difference was statistically significant(z=-2.24,-4.84,t=4.01,6.54,P<0.05).In nasopharyngeal carcinoma,DJDE,ICE and NMSE of OF-DIR were superior to FD-DIR,and the difference was statistically significant(t=4.46,-7.49,z=-2.22,P<0.05),but there was no significant difference in JDM(P>0.05).In lung cancer and nasopharyngeal carcinoma,JDNP of OF-DIR was worse than that of FD-DIR,and the difference was statistically significant(z=-4.29,-4.02,P<0.01).In addition,DJDE is more specific and sensitive on ROC curve(AUC=0.77),and has different performance result for tumor images at different sites.Conclusions The JDM and DJDE evaluation metrics proposed are effective for deformation registration algorithms.OF-DIR is suitable for both lung cancer and nasopharyngeal carcinoma,while the influence of organ motion on the registration effect should be considered when using FD-DIR.

关 键 词:雅可比行列式 形变配准算法评估 肺癌 鼻咽癌 形变场 

分 类 号:R730.55[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象