检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:练志润 张家蔚 杨保林[2] LIAN Zhirun;ZHANG Jiawei;YANG Baolin(Guangdong Province Hospital of Integrated Traditional and West Medicine,Foshan 528200,China;Dongzhimen Hospital of Beijing University of Chinese Medicine,Beijing 100007,China)
机构地区:[1]广东省中西医结合医院,广东佛山528200 [2]北京中医药大学东直门医院,北京100007
出 处:《中国中医基础医学杂志》2024年第3期437-442,共6页JOURNAL OF BASIC CHINESE MEDICINE
基 金:国家重点基础研究计划(973计划)项目(2015CB554406)。
摘 要:目的使用计算机构建《伤寒论》相关方剂的中医方药推荐模型,测试该模型对《伤寒论》方证知识的运用能力。方法本研究纳入《伤寒论》中桂枝类方、麻黄类方、柴胡类方、大黄类方、石膏类方、附子类方、苓桂类方共30首方剂及其加减方,将其改写成特定的方证规则共105条作为本模型的实验数据。本模型分为规则生成医案模型及Transformer模型两部分。规则生成医案模型对特定格式的方证规则分别进行组合、笛卡尔积、拼接,生成多个具有完整证、舌、脉、药且符合中医理法方药特点的中医医案。然后基于编码器-解码器架构的深度学习模型Transformer将生成的中医医案用作训练数据,继而模拟方证到方药之间的非线性复杂映射。结果经规则生成医案模型生成不重复的医案共1212795例,随机选择5000例作为测试集,其余医案作为训练集或验证集。在有5000例医案的测试集中,预测方药与目标方药完全相同的医案有4983例,按预测方药与目标方药重合个数的比率计算总准确率为99.90%。结论本模型可正确运用《伤寒论》的方证知识,模拟预设的方证规则,具备方证识别及病机区分的能力,在构建中医方药推荐系统方面具有发展潜力。Objective To build a prescription recommendation model of traditional Chinese medicine(TCM)about prescriptions in Shang Han Lun.To test the ability of this model to apply knowledge of indications of prescriptions in Shang Han Lun.Methods This research adapted rules of 30 TCM prescriptions for model use including Guizhi-related prescriptions,Mahuang-related prescriptions,Chaihu-related prescriptions,Dahuang-related prescriptions,Shigao-related prescriptions,Fuzi-related prescriptions,Fuling-related prescriptions and their adjusted prescriptions from Cold Damage and Miscellaneous Diseases.As many as 105 rules were added to the model.The model consists of two parts which are the rule-based case data generator(RCDG)model and the transformer model.The RCDG model yields multiple TCM cases including symptoms,tongue appearance,pulse appearance,and medicines by executing combination,Cartesian product,and montage respectively on TCM rules.All of the generated cases are in accord with the theory of TCM.After that,generated data is passed to a deep learning model Transformer that is based on the encoder-decoder structure to simulate the complex nonlinear mapping from syndromes to corresponding medicines.Results A total of 1,212,795 non-duplicate cases were generated by the RCDG model.5,000 cases were randomly selected as the test set,and the rest were used as the training set or validation set.In the test set,there were 4,983 out of 5,000 cases in which the predicted prescription was the same as the target prescription.The coincidence rate between the predicted prescriptions and the target prescriptions was 99.90%.Conclusion The model can correctly apply the knowledge and simulate preset rules of indications of prescriptions in Shang Han Lun,and can differentiate different syndromes and pathogeneses,which indicates its great development potential in constructing a TCM prescription recommendation system.
关 键 词:辨证论治 方证相应 中医药 人工智能 深度学习 TRANSFORMER 注意力机制
分 类 号:R222[医药卫生—中医基础理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.130