检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张万旋 张箭 卢哲 薛薇[1] 张楠[1] ZHANG Wanxuan;ZHANG Jian;LU Zhe;XUE Wei;ZHANG Nan(Beijing Aerospace Propulsion Institute,Beijing 100076,China)
出 处:《国防科技大学学报》2024年第2期115-122,共8页Journal of National University of Defense Technology
基 金:国家自然科学基金资助项目(52232014)。
摘 要:为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单分类支持向量机模型进行改进,并应用于液体火箭发动机异常检测,使单分类支持向量机检测模型具备对不同台次、不同工况的自适应性,提高了模型的计算速度。对多台次热试车数据的分析结果表明,该模型十分有效,训练速度快,具备实用价值。In order to solve the problem of imbalance between positive and negative samples in liquid rocket engine fault diagnosis,and to enable adaptive fault detection during engine steady working state,a anomaly detection model based on fast incremental one-class support vector machine was established.Feature engineering method was adopted to extract features from sensor-obtained multivariate time series.Through incremental leaning,the one-class support vector machine model was improved and applied to liquid rocket engine anomaly detection.The one-class support vector machine detection model was endowed with adaptability for various engine individuals and multiple working conditions,while increasing computing speed.The analysis results of multiple hot test data show that the model is effective,fast-training and practically valuable.
关 键 词:单分类支持向量机 特征提取 自适应检测 增量学习 异常检测
分 类 号:V434[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.81.41