检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡双年 高继东 杜屹洋 HU Shuang-Nian;GAO Ji-Dong;DU Yi-Yang(School of Mathematics and Physics,Nanyang Institute of Technology,Nanyang 473004,China;Nanyang Institute of Technology Library,Nanyang 473004,China)
机构地区:[1]南阳理工学院数理学院,南阳473004 [2]南阳理工学院图书馆,南阳473004
出 处:《四川大学学报(自然科学版)》2024年第2期13-18,共6页Journal of Sichuan University(Natural Science Edition)
基 金:国家自然科学基金(12026224);河南省自然科学基金(232300420123)。
摘 要:设p为素数,k为正整数,F_(q)是q=p^(k)的有限域.用F^(*)_(q)表示F_(q)的乘法群,即F^(*)_(q)=F_(q)/{0}.设f(x_(1),…,x_(n))是F_(q)上的多项式,用N(f(x_(1),…,x_(n))=0)表示f(x_(1),x_(2),…,x_(n))=0在F_(q)上的有理点个数.1981年,Myerson给出了N(x^(4)_(1)+…+x^(4)_(n)=0)的递推公式.最近,赵等给出了N(x^(4)_(1)+x^(4)_(2)=c),N(x^(4)_(1)+x^(4)_(2)+x^(4)_(3)=c)和N(x^(4)_(1)+x^(4)_(2)+x^(4)_(3)+x^(4)_(4)=c)的精确公式,其中c∈F^(*)_(q).本文利用雅可比和以及一个类比Hasse-Davenport定理的结果给出了N(x^(4)_(1)+…+x^(4)_(n)=c)的精确公式,扩展了已有结果.Let p be a prime,k be a positive integer and F_(q) be the finite field of q=pk elements.Let F^(*)_(q) be the multiplicative group of F_(q),that is,F^(*)_(q)=F_(q)\{0}.For a polynomial f(x_(1),…,x_(n))over F_(q),use N(f(x_(1),…,x_(n))=0)to denote the number of solutions of f(x_(1),x_(2),…,x_(n))=0 over F_(q).In 1981,Myerson gave a formula for N(x^(4)_(1)+⋯+x^(4)_(n)=0).Recently,Zhao and coworkers obtained the explicit formulas for N(x^(4)_(1)+x^(4)_(2)=c),N(x^(4)_(1)+x^(4)_(2)+x^(4)_(3)=c)and N(x^(4)_(1)+x^(4)_(2)+x^(4)_(3)+x^(4)_(4)=c),where c∈F^(*)_(q).In this paper,by using the Jacobi sums and an analog of the Hasse-Davenport theorem,we obtain the exact formula for N(x^(4)_(1)+⋯+x^(4)_(n)=c)and thus extend the known results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222