检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李烈熊[1] 戴立庆 LI Lie-xiong;DAI Li-qing(Fujian Chuanzheng Communications College,Fuzhou 350007,China)
出 处:《舰船科学技术》2024年第5期149-152,共4页Ship Science and Technology
摘 要:为了提高船舶维护效率,提出一种多传感器融合下船舶机电系统多发故障信号监测方法。根据故障状态下的信号频率,使用小波变换法提取故障信号特征参数作为蚁群算法优化BP神经网络输入,实现多发故障诊断,并通过DS证据理论完成多传感器数据融合,得出故障诊断结果。实验结果表明,该方法可通过多传感器融合判断出船舶机电系统故障类型,即使一种传感器出现故障也不影响诊断效果,诊断船舶机电系统多发故障平均准确率高达97.02%,能够实现较为精准的船舶机电系统多发故障监测。In order to improve the efficiency of ship maintenance,a multi-sensor fusion based monitoring method for multiple fault signals in ship electromechanical systems is proposed.Based on the frequency of the signal in the fault state,the wavelet transform method is used to extract the characteristic parameters of the fault signal as input for the ant colony al-gorithm to optimize the BP neural network,achieve multi fault diagnosis,and complete multi-sensor data fusion through DS evidence theory to obtain the fault diagnosis results,realizing the monitoring of multi fault signals in the ship's electromech-anical system.The experimental results show that this method can determine the type of faults in ship electromechanical sys-tems through multi-sensor fusion.Even if one sensor fails,it does not affect the diagnostic effect.The average accuracy of diagnosing multiple faults in ship electromechanical systems is as high as 97.02%,which can achieve more accurate monitor-ing of multiple faults in ship electromechanical systems.
关 键 词:多传感器融合 船舶机电系统 故障监测 小波变换 蚁群算法 DS证据理论
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.248.54