基于可见/近红外光谱对葡萄可溶性固形物无损检测研究  

Non-destructive detection of soluble solid content based on visible-near infrared spectroscopy

在线阅读下载全文

作  者:吴虹璋 蔡红星[1] 任玉[1] 王婷婷[1] 周建伟 李栋梁 曲冠男 WU Hongzhang;CAI Hongxing;REN Yu;WANG Tingting;ZHOU Jianwei;LI Dongliang;QU Guannan(Key laboratory of Jilin Province for Spectral Detection Science and Technology,Changchun University of Science and Technology,Changchun 130022,Jilin,China)

机构地区:[1]长春理工大学物理学院吉林省光谱探测科学与技术重点实验室,长春130022

出  处:《光散射学报》2024年第1期44-51,共8页The Journal of Light Scattering

基  金:吉林省教育厅项目(JJKH20230795KJ)。

摘  要:葡萄中可溶性固形物是评价葡萄成熟度的重要指标,本文探究了基于可见/近红外光谱技术对多个品种葡萄(红提、巨峰、辽峰)可溶性固形物(Soluble Solid Content,SSC)含量进行定量分析。分别采集了三个葡萄品种在550~960 nm波长范围内的透射光谱数据,采用Savitzky-Golay卷积平滑(S-G)、标准正态变换(Standard Normal Variate,SNV)、小波变换(WT)、一阶求导+S-G卷积平滑组合(1stDer+S-G)预处理方法,对比分析出最适合各个品种的预处理方法;然后在最佳的预处理方法下采用连续投影算法(SPA)、竞争性自适应重加权(CARS)对光谱进行特征波长选择;结合化学计量学方法分别建立多品种与单一品种的偏最小二乘回归(PLSR)、BP神经网络SSC含量无损预测模型。结果表明,基于BP-SPA建立的SSC含量模型最优,多个品种通用SSC含量预测模型的预测集相关系数(Rp 2)为0.85,表明基于可见/近红外光谱技术对多个葡萄品种SSC含量无损检测是可行的。The Soluble solid content in grapes is an important indicator for evaluating grape ripeness,and this paper explores the quantitative analysis of soluble solid content(SSC)content in several varieties of grapes(Hongti,Jufeng,and Liaofeng)based on visible/near-infrared(NIR)spectroscopic techniques.The transmission spectra of three grape varieties in the wavelength range of 550-960 nm were collected separately,and Savitzky-Golay convolutional smoothing(S-G),standard normal variate(SNV),wavelet transform(WT),and the combination of first-order derivation+S-G convolutional smoothing(1stDer+S-G)were used to analyze the soluble solids content of the grapes.Preprocessing methods,and compare and analyze the most suitable preprocessing methods for each variety;then under the optimal preprocessing methods,we used the continuous projection algorithm(SPA)and competitive adaptive reweighting(CARS)to select the characteristic wavelengths of the spectra;and combined with chemometrics methods to establish the partial least squares regression(PLSR)for multi-species and single-species,and the lossless prediction model for the content of the SSC of the BP neural network,respectively.The results showed that the SSC content model based on BP-SPA was optimal,and the prediction set correlation coefficient(Rp 2)of the generalized SSC content prediction model for multiple varieties was 0.85,which indicated that the non-destructive detection of SSC content in multiple grape varieties based on visible/near-infrared spectroscopy was feasible.

关 键 词:可见/近红外光谱 可溶性固形物 偏最小二乘 无损检测 BP神经网络 

分 类 号:O433[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象