一类具有交错扩散项的疟疾模型的共存解  

Coexistence solutions for a class of malaria models with cross-diffusion terms

在线阅读下载全文

作  者:颜春悦 朱敏 许勇 YAN Chunyue;ZHU Min;XU Yong(School of Mathematics and Statistics,Anhui Normal University,Wuhu 241000,China;School of Computer and Information,Anhui Normal University,Wuhu 241000,China)

机构地区:[1]安徽师范大学数学与统计学院,安徽芜湖241000 [2]安徽师范大学计算机与信息学院,安徽芜湖241000

出  处:《高师理科学刊》2024年第3期19-28,共10页Journal of Science of Teachers'College and University

基  金:新时代育人质量工程省级研究生教育教学改革研究资助项目(2022jyjxggyj168);安徽省高等教育重大决策部署研究项目(2022jcbs020);安徽省质量工程一般教研项目(2022jyxm527)。

摘  要:为了解疟疾在人群和蚊群中的传播机制,在传统的疟疾常微分方程模型中引入了较为复杂的扩散结构和异质环境,探讨了基本再生数与交错扩散系数及其他参数的关系,利用上下解方法研究了共存解的存在性.结果表明,当低风险阈值大于1时,人群和蚊群携带的疟疾病毒将会共存,不利于疟疾的防控;当高风险阈值小于或等于1时,则疟疾病毒就会消失.给出了数值模拟及流行病学解释.In order to understand the transmission mechanism of malaria in human and mosquitoes,complex diffusion structures and heterogeneous environments is introduced to traditional malaria ordinary differential equation models.The relationship between the basic reproduction number and the cross-diffusion coefficient as well as other parameters is explored,and the upper-lower solution method is also utilized to study the existence of coexisting solutions.The results imply that when the low-risk threshold value is greater than one,the malaria virus carried by populations and mosquito populations can coexist,which is not conducive to the prevention and control of malaria.While the high-risk threshold value is less than or equal to one,the malaria virus will disappear.Finally,numerical simulations and epidemiological explanations are provided.

关 键 词:疟疾模型 异质环境 交错扩散 共存解 

分 类 号:O151.21[理学—数学] Q141[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象