检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金凌云 王从庆[1] 李宏光 JIN Lingyun;WANG Congqing;LI Hongguang(College of Automation Engineering Nanjing University of Aeronautics and Astronautics ,Nanjing 211000 China)
机构地区:[1]南京航空航天大学自动化学院,南京211000
出 处:《电光与控制》2024年第4期1-5,共5页Electronics Optics & Control
基 金:中国高校产学研创新基金(2021ZYA08006)。
摘 要:为了解决点特征SLAM算法在低纹理环境中精度下降的问题,提出了一种基于线特征约束的无人机双目视觉SLAM算法。首先,将双目相机观测线特征分为单目相机在两帧下观测、双目相机在两帧下观测、双目相机在一帧下观测3种情况;然后,计算了3种情况下的残差块和雅可比矩阵;最后,利用所提线特征约束改进了VINS-Fusion算法。在EuRoC数据集上进行实验验证,结果表明提出的算法在数据集半数以上的场景中都有良好的表现,相较于改进前的VINS-Fusion算法定位精度平均提升13.2%。In order to solve the accuracy degradation problem of the point feature SLAM algorithm in low texture environments a UAV binocular vision SLAM algorithm based on line feature constraints is proposed.Firstly the observation of line features by using a binocular camera is divided into three situations that is a monocular camera observing in two frames a binocular camera observing in two frames and a binocular camera observing in one frame.Secondly the residual block and Jacobian matrix in the three situations are calculated respectively.Finally the line feature constraints proposed in this paper are used to improve the VINS-Fusion algorithm.The experiments are conducted on the EuRoC dataset and the results show that the proposed algorithm exhibits good performance in over half scenarios of the dataset and has a 13.2%improvement on average in positioning accuracy compared with the VINS-Fusion algorithm before improvement.
关 键 词:SLAM 视觉惯性里程计 双目线特征 非线性优化
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.207.114