检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:奚园园 王永茂[1] 芦碧波[1] 邢智峰[2] 侯广顺[2] Xi Yuanyuan;Wang Yongmao;Lu Bibo;Xing Zhifeng;Hou Guangshun(Henan Polytechnic University,College of Computer Science and Technology,Jiaozuo 454003,China;Henan Polytechnic University,College of Resources and Environment,Jiaozuo 454003,China)
机构地区:[1]河南理工大学计算机科学与技术学院,河南焦作454003 [2]河南理工大学资源环境学院,河南焦作454003
出 处:《地球科学》2024年第3期1154-1164,共11页Earth Science
基 金:国家自然科学基金项目(Nos.41871333,41773024);河南理工大学博士基金资助项目(No.B2014-043);河南省高等学校重点科研项目(No.21A520016);河南省高校国家级大学生创新创业训练计划项目(No.202110460078);河南省本科高校省级大学生创新创业训练计划项目(No.S202110460005)。
摘 要:䗴化石是石炭纪、二叠纪重要的标准化石,其详细的鉴定工作对确定地质时代和划分石炭系‒二叠系具有重要意义.鉴于目前䗴类化石检测方法的局限性,提出一种基于深度学习单阶段算法的䗴类化石检测.以䗴类化石为研究对象,对原始模型进行分析,之后联合优化权重损失函数和BN层尺度因子的L1正则化等方式进行通道剪枝,再使用知识蒸馏使剪枝后模型恢复检测性能.实验结果表明,该方法可实现薄片图像中䗴类所在区域的定位和分类,平均精度均值达到98.1%,满足实时检测模型的要求,并且剪枝后参数量压缩了74.1%,解决了真实场景中存在的算力缺乏等问题.该方法能够有效保证䗴类化石的检测效果,同时扩展了该模型在嵌入式设备的适用范围,为深度学习在古生物化石图像的智能识别方面提供更多可能性.Fusulinids are important standard fossils of the Carboniferous and Permian periods.The identification of fusulinids is significant for determining the geological age and delineating the Carboniferous-Permian stratigraphy.Considering the limitations of current fossil detection methods,a fusulinid detection method based on a deep learning single-stage algorithm is proposed.Taking fusulinids as the research object,the original model is improved by channel pruning by jointly optimizing the weight loss function and L1 regularization of the BN layer scale factor to compress the model size.Furthermore,the knowledge distillation is utilized to restore the detection performance of the pruned model.The experimental results show that the method can achieve the classification and localization of the fusulinids in the thin section images.The average accuracy reaches 98.1%,which meets the requirements of the real-time detection model.In addition,the number of model parameters is reduced by 74.1%,which solves the problems such as the lack of arithmetic power existing in real scenes.The method can effectively achieve the detection of fusulinids,while extending the applicability of the model to embedded devices and providing more possibilities for deep learning to perform intelligent recognition in paleontological fossil images.
关 键 词:䗴类化石 深度学习 目标检测 石炭系-二叠系 知识蒸馏 地层学
分 类 号:P534.6[天文地球—古生物学与地层学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170