检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭远 傅卓佳[1] 闵建 刘肖廷 赵海涛[3] Guo Yuan;Fu Zhuojia;Min Jian;Liu Xiaoting;Zhao Haitao(Center for Numerical Simulation Software in Engineering and Sciences,College of Mechanics and Materials,Hohai University,Nanjing 211100,China;Institute of Science and Technology Research,China Three Gorges Corporation,Beijing 101199,China;College of Civil and Transportation Engineering,Hohai University,Nanjing 210098,China)
机构地区:[1]河海大学力学与材料学院工程与科学数值模拟软件中心,南京211100 [2]中国三峡集团公司科学技术研究院,北京101199 [3]河海大学土木与交通学院,南京210098
出 处:《力学学报》2024年第3期763-773,共11页Chinese Journal of Theoretical and Applied Mechanics
基 金:国家自然科学基金(12122205,12372196,52325803和U22A20229);中国长江三峡集团自主科研(NBZZ202200535)资助项目。
摘 要:由于传统物理信息神经网络(PINN)在长时间模拟时存在计算稳定性差甚至无法获得有效解的难题,文章提出了一种基于课程学习和迁移学习的物理信息神经网络(CTL-PINN),用于长时间非线性波传播模拟.该改进的PINN的主要思想是将原长时间历程问题转化成若干个短时间子问题,其求解过程分为3个阶段;在初始阶段,使用传统PINN来获得初始短期子问题的解;在课程学习阶段,使用包含前一步训练信息的传统PINN以时域扩大的方式逐次求解,在迁移学习阶段,使用包含前一步训练信息的传统PINN以时域迁移的方式逐次求解.这种改进的PINN可以避免传统PINN陷入局部最优解的问题.最后通过几个基准算例验证了本文所提出的CTL-PINN方法在模拟长时间非线性波传播过程的有效性和鲁棒性.Due to the computational instability to obtain effective solutions in long-term evolution simulation by using the standard physics-informed neural networks(PINN),this paper develops a curriculum-transfer-learning based physics-informed neural networks(CTL-PINN)for long-term nonlinear wave propagation simulation.In the present CTL-PINN,the original long-term problem is transformed into several short-term sub-problems,and the solving process includes the following three stages.In the initial stage,we employ the standard PINN to obtain the solution of the initial short-term sub-problem,and then in the curriculum learning stage the standard PINN with the training information in the previous step is successively used to solve the problem with time domain extension,and next in the transfer learning stage the standard PINN with the training information in the previous step is successively used to solve the problem with time domain transfer.This improved PINN can avoid obtaining the local optimal solutions by using the standard PINN.Finally,several benchmark examples are used to verify the effectiveness and robustness of the proposed CTL-PINN in the solution of long-term nonlinear wave propagation problems.
关 键 词:课程学习 迁移学习 物理信息神经网络 波传播分析 长时间模拟 非线性
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] O34[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222