基于细菌觅食-改进蚁群优化算法的水面无人船路径规划  

Path Planning for Unmanned Surface Vehicle Based on Bacterial Foraging-Improved Ant Colony Optimization Algorithm

在线阅读下载全文

作  者:毛寿祺 杨平[1] 高迪驹[1] 刘志全[1] MAO Shouqi;YANG Ping;GAO Diju;LIU Zhiquan(Key Laboratory of Transport Industry of Marine Technology and Control Engineering,Shanghai Maritime University,Shanghai 201306,China)

机构地区:[1]上海海事大学航运技术与控制工程交通运输行业重点实验室,上海201306

出  处:《控制工程》2024年第4期608-616,共9页Control Engineering of China

基  金:国家自然科学基金资助项目(52001197)。

摘  要:为了解决水面无人船全局路径规划问题,提出了一种细菌觅食-改进蚁群优化算法(bacterial foraging-improved ant colony optimization algorithm,BF-IACOA)。相较于传统蚁群优化算法(ant colony optimization algorithm,ACOA),该算法在路径搜索策略上考虑水面无人船航行需要尽可能减少转向次数和完全规避过大转向角的约束,引入转向角启发因子,综合求解转移概率;同时引入细菌觅食算法的繁殖操作和趋化操作,改进信息素浓度的更新方式,解决传统ACOA容易陷入局部最优解和收敛速度较慢的问题。仿真结果表明,相较于传统ACOA,BF-IACOA的全局搜索能力得到较大幅度的提升,并且收敛迭代次数减少超过30%;在实际水域环境模型下,BF-IACOA可以通过14次迭代为无人船规划出全局可行路径。To solve the problem of global path planning for unmanned surface vehicles,a bacterial foraging-improved ant colony optimization algorithm(BF-IACOA)is proposed.Compared with the conventional ant colony optimization algorithm(ACOA),the proposed algorithm takes into account constraints such as the need to minimize the number of turns and completely avoid excessive steering angle in the path search strategy for the navigation of unmanned surface vehicles,and the steering angle heuristic factor is introduced to solve the transfer probability comprehensively.At the same time,the reproduction operation and chemotaxis operation of bacterial foraging algorithm are introduced to improve the updating mode of pheromone concentration and solve the problems that the conventional ACOA is easy to fall into the local optimal solution and has slow convergence speed.The simulation results show that,compared with the conventional ACOA,the global search capability of BF-IACOA is greatly improved,and the number of convergence iterations is reduced by more than 30%.Under the actual water environment model,the BF-IACOA can plan a global feasible path at 14 iterations for the unmanned surface vehicle.

关 键 词:水面无人船 改进蚁群优化算法 细菌觅食算法 全局路径规划 转向 

分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象