检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马宇航 宋宝燕[1] 丁琳琳[1] 鲁闻一 纪婉婷 MA Yu-hang;SONG Bao-yan;DING Lin-lin;LU Wen-yi;JI Wan-ting(College of Information,Liaoning University,Shenyang 110036,China)
出 处:《计算机工程与设计》2024年第4期1218-1224,共7页Computer Engineering and Design
基 金:辽宁省应用基础研究计划基金项目(2022JH2/101300250);国家自然科学基金项目(62072220);辽宁省中央引导地方科技发展基金项目(2022JH6/100100032);辽宁省自然科学基金项目(2022-KF-13-06)。
摘 要:针对现有问答方法在处理触发词歧义性问题上的不足,提出一种融合实体信息和时序特征的问答式事件检测方法EDQA-EITF。构建一种基于RoBERTa的问答框架,增强模型的语义表示能力;通过在模型输入序列中显示地添加实体、实体类型等先验信息,进一步帮助模型根据句子的上下文语境对触发词进行分类;采用最小门控循环单元(minimal gated unit,MGU)和Transformer编码器对输入序列中的时序依赖关系进行建模,提升模型对于句子的语义关系、句法结构的阅读与理解能力。公共数据集上的实验结果表明,所提方法在进行事件检测时具有更优的性能,有效缓解了触发词的歧义性问题。Aiming at the shortcomings of existing question answering methods on the problem of trigger ambiguity,a question answering-based event detection method fusing entity information and temporal feature named EDQA-EITF was proposed.A question answering framework based on RoBERTa was constructed to enhance the model’s semantic representation ability.The priori information such as entities and entity types was added to the model input sequence in a displayed way,to further help the model classify the triggers based on the contextual semantic environment of the sentence.The minimal gated unit(MGU)and Transformer encoder were used to model the temporal dependencies in the input sequence,which improved the model’s ability to read and understand the semantic relation and syntactic structure of sentence.Experimental results on public dataset show that the proposed method has better performance in event detection and effectively alleviates the problem of trigger ambiguity.
关 键 词:事件检测 问答 RoBERTa 时序特征 先验信息 最小门控单元 TRANSFORMER
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.45.231