检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:淡乾川 崔凤坤 DAN Qian-chuan;CUI Feng-kun(College of Intelligent Manufacturing,Chongqing Creation Vocational College,Chongqing 402160,China;Shandong Jiaotong University,Shandong Ji’nan 250357,China)
机构地区:[1]重庆科创职业学院智能制造学院,重庆402160 [2]山东交通学院,山东济南250357
出 处:《机械设计与制造》2024年第4期308-313,共6页Machinery Design & Manufacture
基 金:重庆市教委科技项目(KJQN202005401)。
摘 要:为了提高机械臂与环境交互过程中的接触力估计精度和关节控制精度,提出了基于时延强跟踪Kalman滤波的接触力估计方法和基于熵-自学习控制网络的关节角位置控制方法。建立了机械臂系统的关节驱动模型和动力学模型;基于时延估计理论,建立了4自由度机械臂系统的时延模型;在Kalman滤波中引入了渐消因子,使估计残差强行正交,从而提出了基于时延强跟踪Kalman的接触力估计方法。以接触力误差和关节位置误差为输入,以关节力矩为输出构建了自学习控制网络,并提出使用熵聚类确定网络结构和参数,从而设计了熵-自学习控制网络。经仿真验证,基于时延强跟踪Kalman的估计误差区间分布小于标准Kalman和文献[12]柔顺控制,且分布密度在0误差处极高;熵-自学习控制网络对期望轨迹的绝对跟踪误差和收敛时间远小于自学习控制网络和变阻抗阻尼控制。仿真结果验证了本文接触力估计方法和角位置控制方法的优越性。In order to improve the accuracy of contact force estimation and joint control in the interaction between manipulator and environment,a contact force estimation method based on time-delay strong tracking Kalman filter and a joint angle position control method based on entropy self-learning control network are proposed.The joint driving model and dynamic model of the manipulator system are established.Based on the theory of time delay estimation,the time delay model of 4-DOF manipulator system is established.The fading factor is introduced into the Kalman filter to force the estimation residual to be orthogonal,so a contact force estimation method based on time-delay strong tracking Kalman is proposed.Taking the contact force error and joint position error as the input and joint torque as the output,the self-learning control network is constructed,and the entropy cluster-ing is proposed to determine the network structure and parameters,so as to design the entropy self-learning control network.The simulation results show that the estimation error interval distribution based on time-delay strong tracking Kalman is smaller than that of standard Kalman and reference[12],and the distribution density is very high at the error of 0.The absolute tracking error and convergence time of entropy self-learning control network for the desired trajectory are much smaller than that of self-learning control network and variable impedance damping control.The simulation results verify the superiority of the contact force estimation method and angular position control method in this paper.
关 键 词:接触力估计 关节控制 强跟踪Kalman滤波 熵-自学习控制 机械臂系统
分 类 号:TH16[机械工程—机械制造及自动化] TP2241[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.196.41