检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡全福[1] 贺立红[1] 王志军 姚文达 欧阳帆 廖靖远 王盛 刘船行 刘庆捷 CAI Quanfu;HE Lihong;WANG Zhijun;YAO Wenda;OUYANG Fan;LIAO Jingyuan;WANG Sheng;LIU Chuanxing;LIU Qingjie(WISDRI Engineering&Research Incorporation Limited,Wuhan 430223,China;Jiangxi Xingang Southern New Materials Co.,Ltd.,Xinyu 338026,China)
机构地区:[1]中冶南方工程技术有限公司,湖北武汉430223 [2]江西新钢南方新材料有限公司,江西新余338026
出 处:《电工钢》2024年第2期37-40,共4页ELECTRICAL STEEL
摘 要:结合BP神经网络与粒子群算法,提出了一种降低硅钢铁损的工艺参数优化策略。首先,采用BP神经网络建立了对硅钢铁损的预测模型,模型具有很高的拟合精度和预测精度。然后在工艺参数的优化方面,以BP神经网络预测模型作为适应度函数,选取连续退火RTF炉段的各段炉温作为优化变量,采用粒子群算法优化这些工艺参数。结果显示,基于BP神经网络,采用粒子群算法对部分工艺参数进行优化后,硅钢铁损明显降低,具有一定的指导意义。A process parameter optimization strategy for reducing silicon steel iron loss was proposed by combining BP neural network and particle swarm optimization(PSO)algorithm.Firstly,a BP neural network was used to establish a prediction model for silicon steel iron loss,which has high fitting and prediction accuracy.Then,in terms of optimizing process parameters,the BP neural network prediction model was used as the fitness function,and the furnace temperatures of each section of the continuous annealing RTF furnace were selected as optimization variables.PSO algorithm was used to optimize these process parameters.The results showed that using BP neural network and PSO algorithm to optimize some process parameters can significantly reduce the iron loss of silicon steel,which has certain guiding significance.
分 类 号:TG142.77[一般工业技术—材料科学与工程] TP301.6[金属学及工艺—金属材料]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145