检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张永宏[1] 李宇超 董天天[1] 秦夏洋 刘云平[1] 曹景兴 Zhang Yonghong;Li Yuchao;Dong Tiantian;Qin Xiayang;Liu Yunping;Cao Jingxing(School of Automation,Nanjing University of Information Science and Technology,Nanjing,210044,China;Wuxi SIASUN Robot&Automation Co,Ltd,Wuxi,210000,China)
机构地区:[1]南京信息工程大学自动化学院,南京市210044 [2]无锡新松机器人自动化有限公司,江苏无锡214000
出 处:《中国农机化学报》2024年第4期205-213,共9页Journal of Chinese Agricultural Mechanization
基 金:江苏省现代农业机械装备与技术示范推广项目(NJ2022-02)。
摘 要:针对采摘机器人收获技术中的识别技术受限于非结构化环境中复杂背景干扰的问题,采用改进模型后处理的研究路线,提出一种改进YOLOv5算法。首先将果实目标的中心点距离、预测框宽高实际差值与面积交并比三者共同考虑为损失项,提升预测框实际尺寸精度,再利用中心点距离作为惩罚项加权面积交并比得分,提升密集目标的识别能力,最后通过设置辅助训练头,提供更多的梯度信息以防止过拟合现象。通过多种损失函数损失值对比与模型改进精度对比试验证明改进有效性,部署至机器人验证可行性。结果表明,改进后的算法模型识别平均精度95.6%,召回率达到90.1%,相较于改进前全类精度提升0.4个百分点,召回率提升0.4个百分点,满足采摘机器人识别需求。Aiming at the problem that the recognition technology of harvesting robots in crop picking was limited by complex background interference in unstructured environments,especially due to occlusion by foliage and the overlapping of fruits,resulting in lower accuracy in identification,an improved YOLOv5 algorithm was proposed based on the improved research approach involving post-processing of the model.Initially,the centroid distance of fruit targets,the actual difference in predicted box width and height,and the intersection-over-union of areas were collectively considered as loss terms.This was aimed at enhancing the accuracy of predicted box sizes.Furthermore,the centroid distance was utilized as a penalty term weighted by the intersection-over-union score to improve the recognition capability for densely clustered targets.Subsequently,auxiliary training heads were incorporated to provide additional gradient information,thereby preventing overfitting.Through comparative analysis of loss values using multiple loss functions and assessing the model improve mentaccuracy,the effectiveness of the enhancements was experimentally validated.Finally,the deployment onto the robot confirmed the feasibility of the proposed improvements.The results indicated that the improved algorithm model achieved an average accuracy of 95.6%,with a recall rate of 90.1%.Compared to the pre-improvement overall class accuracy,there was an increase of 0.4 percentage points in both accuracy and recall rate,meeting the recognition requirements for harvesting robots.
关 键 词:非结构化 番茄果实 目标识别 损失函数优化 YOLOv5算法
分 类 号:TP249[自动化与计算机技术—检测技术与自动化装置] TP391.4[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112