检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王远路 江剑韬 WANG Yuan-u;JIANG Jian-tao(School of Mathematical Science,Guizhou Normal University,Guiyang 550025,China)
出 处:《遵义师范学院学报》2024年第2期81-84,92,共5页Journal of Zunyi Normal University
摘 要:本文针对一类四阶方程提出了一种基于降阶格式的有效谱Galerkin逼近.首先,引入一个辅助函数,将四阶方程化为两个耦合的二阶方程,并推导了它们的弱形式及其离散格式.其次,利用Lax-Milgram引理和非一致带权Sobolev空间中正交投影算子的逼近性质,严格地证明了弱解和逼近解的存在唯一性及它们之间的误差估计.最后,通过一些数值算例,数值结果表明该算法是收敛和高精度的.In this paper, we propose a spectral Galerkin approximation and error estimates based on reduced order scheme for a class offourth order equations. Firstly, by introducing a auxiliary function, we transformthe original problems to two coupled second order equations,and their weak formand corresponding discrete format are also derived. Secondly, by using Lax-Milgramlemma and the approximationproperties of orthogonal projection operators in non-uniform weighted Sobolev spaces, we strictly prove the existence and uniquenessof weak solution and approximate solution and as well the error estimate. At the end, we conduct some numerical experiments,which show that the algorithmis convergent and high accurate.
关 键 词:四阶方程 降阶格式 谱Galerkin逼近 误差估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.95.146